Fluorescence turn-on detection of human serum albumin based on the assembly of gold nanoclusters and bromocresol green

Jian X, Yang YS, Jiang AQ, Zhu HL. Detection methods and research progress of human serum albumin. Crit Rev Anal Chem. 2022;52:72–92. https://doi.org/10.1080/10408347.2020.1789835.

Article  CAS  Google Scholar 

Tang J, Yang X, Li j, Zhang D, Wang Y, Ye Y. Photo-controlled fluorescence “double-check” for human serum albumin and its applications. Sensor Actuat B Chem. 2022;350:1–9. https://doi.org/10.1016/j.snb.2021.130814.

Kumar D, Banerjee D. Methods of albumin estimation in clinical biochemistry: past, present, and future. Clin Chim Acta. 2017;469:150–60. https://doi.org/10.1016/j.cca.2017.04.007.

Article  CAS  PubMed  Google Scholar 

Tu M, Chang Y, Kang Y, Chang H, Chang P, Yew T. A quantum dot-based optical immunosensor for human serum albumin detection. Biosens Bioelectron. 2012;34:286–90. https://doi.org/10.1016/j.bios.2011.11.035.

Article  CAS  PubMed  Google Scholar 

MLčochová H, Ratih R, Michalcová L, Wätzig H. Comparison of mobility shift affinity capillary electrophoresis and capillary electrophoresis frontal analysis for binding constant determination between human serum albumin and small drugs. Electrophoresis. 2022;46:1724–34. https://doi.org/10.1002/elps.202100320.

Caballero D, Martinez E, Bausells J, Errachid A, Samitier J. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface. Anal Chim Acta. 2012;720:43–8. https://doi.org/10.1016/j.aca.2012.01.031.

Article  CAS  PubMed  Google Scholar 

Giovannoli C, Baggiani C, Passini C, Biagioli F, Anfossi L. A rational route to the development of a competitive capillary electrophoresis immunoassay: assessment of the variables affecting the performances of a competitive capillary electrophoresis immunoassay for human serum albumin. Talanta. 2012;94:65–9. https://doi.org/10.1016/j.talanta.2012.02.052.

Article  CAS  PubMed  Google Scholar 

Sourav S, Anushree S, Yun L, Subhankar S, Kyo H. Rapid point-of-care quantification of human serum albumin in urine based on ratiometric fluorescence signaling driven by intramolecular H-bonding. ACS Sens. 2022;7:3790−9 https://doi.org/10.1021/acssensors.2c01684.

Doumas BT, Watson W, Biggs HG. Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta. 1997;258:21–30. https://doi.org/10.1016/S0009-8981(96)06447-9.

Article  CAS  Google Scholar 

Ma CQ, Li K, Tong S. Selective spectrophotometric determination of human serum albumin with tetraiodo phenol sulfonphthalein. Anal Lett. 1997;30:739–52. https://doi.org/10.1080/00032719708006421.

Article  CAS  Google Scholar 

Cowie JR, Evans GO. Plasma albumin determination on the Cobas Bio centrifugal analyser using bromocresol green. J Anal Methods Chem. 2018;5:153–4. https://doi.org/10.1155/S1463924683000371.

Article  Google Scholar 

Hu Q, Yao B, Owyong TC, Prashanth S, Wang C, Zhang X, Wong W, Tang Y, Hong Y. Detection of urinary albumin using a “turn-on” fluorescent probe with aggregation-induced emission characteristics. Chem Asian J. 2021;10:1245–52. https://doi.org/10.1002/asia.202100180.

Article  CAS  Google Scholar 

Matthew W, Koslen M, Benight A. Ligand binding to natural and modified human serum albumin. Anal Biochem. 2021;612:113843. https://doi.org/10.1016/j.ab.2020.113843.

Kim B, Kim TH. Determination of human serum albumin using a single-walled carbon nanotube-FET modified with bromocresol green. Microchim Acta. 2016;183:1513–8. https://doi.org/10.1007/s00604-016-1815-6.

Article  CAS  Google Scholar 

Yang R, Tseng C, Ju W, Wang H, Fu L. A rapid paper-based detection system for determination of human serum albumin concentration. Chem Eng J. 2018;352:241–6. https://doi.org/10.1016/j.cej.2018.07.022.

Article  CAS  Google Scholar 

Kishore S, Maruthamuthu M. Bromocresol green - a hydrophobic spectrophotometric probe for human serum albumin. Bull Chem Soc Jpn. 1990;63:614–7. https://doi.org/10.1246/bcsj.63.614.

Article  CAS  Google Scholar 

Cieplak M, Szwabinska K, Sosnowska M, Bikram C. Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting. Biosens Bioelectron. 2015;74:960–6. https://doi.org/10.1016/j.bios.2015.07.061.

Article  CAS  PubMed  Google Scholar 

Imam S, Reja, Imran A, Khan, Vandana, Bhalla, Manoj, Kumar. A TICT based NIR-fluorescent probe for human serum albumin: a preclinical diagnosis in blood serum. Chem Commun. 2016;52:1182–5. https://doi.org/10.1039/c5cc08217j.

Liu C, Yang M, Gao Q, Du J, Luo H, Liu Y, Yang C. Differential recognition and quantification of HSA and BSA based on two red-NIR fluorescent probes. J Lumin. 2018;197:193–9. https://doi.org/10.1016/j.jlumin.2018.01.021.

Article  CAS  Google Scholar 

Hu G, Jia H, Zhao L, Cho DH, Fang J. Small molecule fluorescent probes of protein vicinal dithiols. Chinese Chem Lett. 2021;16:1245–52. https://doi.org/10.1002/asia.202100180.

Article  CAS  Google Scholar 

Liu B, Zhao X, Zhou M. Modulating donor of dicyanoisophorone-based fluorophores to detect human serum albumin with NIR fluorescence. Spectrochim Acta A. 2022;268:120666. https://doi.org/10.1016/j.saa.2021.120666.

Wang Y, Feng L, Xu L, Hou J, Jin Q, Zhou N, Lina Y, Cui J, Ge G. An ultrasensitive and conformation sensitive fluorescent probe for sensing human albumin in complex biological samples. Sensor Actuat B-Chem. 2017;265:923–31. https://doi.org/10.1016/j.snb.2017.02.046.

Article  CAS  Google Scholar 

Liu D, Pan X, Wu W, Li C, Han X. Detection of tetracycline in water using glutathione-protected fluorescent gold nanoclusters. Anal Sci. 2019;35:367–70. https://doi.org/10.2116/analsci.18P392.

Article  CAS  PubMed  Google Scholar 

Jain V, Bhagat S, Singh S, Bovine serum albumin decorated gold nanoclusters: a fluorescence-based nanoprobe for detection of intracellular hydrogen peroxide. Sensor Actuat B Chem. 2021;327:128886. https://doi.org/10.1016/j.snb.2020.128886.

Nadjaa K, Gregorb K, GuidoaCAa K. Hybrid inorganic-organic fluorescent silica nanoparticles—influence of dye binding modes on dye leaching. J Sol-Gel Sci Technol. 2021. https://doi.org/10.1007/s10971-021-05578-y.

Article  Google Scholar 

Chen T, Hu Y, Cen Y, Chu Y. A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. J Am Chem Soc. 2013;135:11595–602. https://doi.org/10.1021/ja40359391.

Article  CAS  PubMed  Google Scholar 

Liu X, Che Y, Yang G. Upconversion luminescence in quantum dots. Chin J Lumin. 2022;43:297. https://doi.org/10.37188/CJL.20210394.

Soleilhac A, Bertorelle F, Comby CZ, Chirot F, Calin N, Dugourd P. Rodolphe Antoine, Size characterization of glutathione-protected gold nanoclusters in the solid, liquid and gas phases. J Phys Chem C. 2017;121:27733–40. https://doi.org/10.1021/acs.jpcc.7b09500.

Article  CAS  Google Scholar 

Peng H, Jian M, Huang Z, Wang W, Deng H, Wu W, Liu A, Xi X, Chen W. Facile electrochemiluminescence sensing platform based on high-quantumyield gold nanocluster probe for ultrasensitive glutathione detection. Biosens Bioelectron. 2018;105:71–6. https://doi.org/10.1016/j.bios.2018.01.021.

Article  CAS  PubMed  Google Scholar 

You J, Lu C, Santhana Krishna Kumar A. Cerium(iii)-directed assembly of glutathione-capped gold nanoclusters for sensing and imaging of alkaline phosphatase-mediated hydrolysis of adenosine triphosphate. Nanoscale. 2018;10:17691–8. https://doi.org/10.1039/c8nr05050c.

Bian R, Wu X, Chai F, Li L, Zhang L, Wang T, Wang C. Facile preparation of fluorescent Au nanoclusters-based test papers for recyclable detection of Hg2+ and Pb2+. Sensor Actuat B Chem. 2021;241:592–600. https://doi.org/10.1016/j.snb.2016.10.120.

Article  CAS  Google Scholar 

Xiao W, Yang Z, Liu J, Chen Z, Li H. Sensitive cholesterol determination by β-cyclodextrin recognition based on fluorescence enhancement of gold nanoclusters. Microchem J 2022;175:107125. https://doi.org/10.1016/j.microc.2021.107125.

Ni P, Chen C, Jiang Y, Zhang C, Wang B, Wang H. A fluorescent assay for alkaline phosphatase activity based on inner filter effect by in-situ formation of fluorescent azamonardine. Sensor Actuat B-Chem. 2020;302:127145. https://doi.org/10.1016/j.jphotochem.2021.113195.

Le TH, Kim JH, Park SJ. “Turn on” fluorescence sensor of glutathione based on inner filter effect of co-doped carbon dot/gold nanoparticle composites. Int J Mol Sci. 2021;23:190. https://doi.org/10.1016/j.cclet.2021.12.061.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seelmann K, Gledhill M, Aßmann S, Körtzinger A. Impact of impurities in bromocresol green indicator dye on spectrophotometric total alkalinity measurements. Ocean Sci. 2020;16:535–44. https://doi.org/10.5194/os-16-535-2020.

Article  CAS  Google Scholar 

Ito S, Yamamoto D. Mechanism for the color change in bromocresol purple bound to human serum albumin. Clin Chim Acta. 2010;411:294–5. https://doi.org/10.1016/j.cca.2009.11.019.

Article  CAS  PubMed  Google Scholar 

Smith SE, Williams JM, Shin A, Kazunori K. Time-insensitive fluorescent sensor for human serum albumin and its unusual red shift. Anal Chem. 2014;86:2332–6. https://doi.org/10.1021/ac5001256.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sigurd D, Wim VB, Nadeige VV, Sunny E, Anneleen P, Eva S, Griet G, Joris D, Marijn MS. Binding of bromocresol green and bromocresol purple to albumin in hemodialysis patients. Clin Chem Lab Med. 2018;56:436–40. https://doi.org/10.1515/cclm-2017-0444.

Article  CAS  Google Scholar 

Pokhrel P, Jha S. Selection of appropriate protein assay method for a paper microfluidics platform. Pract Lab Med. 2020;21:e00166. https://doi.org/10.1016/j.plabm.2020.e00166.

Xu Z, Huang X, Zhang M, Chen M, Liu S, Tan Y, Yin J. Tissue imaging of glutathione-specific naphthalimide-cyanine dye with two-photon and near-infrared manners. Anal Chem. 2019;91:11343–8. https://doi.org/10.1021/acs.analchem.9b02458.

Article  CAS  PubMed  Google Scholar 

Huang Z, Wang M, Guo Z, Wang H, Dong H. Aggregation-enhanced emission of gold nanoclusters induced by serum albumin and its application to protein detection and fabrication of molecular logic gates. ACS Omega. 2018;3:12763–9. https://doi.org/10.1021/acsomega.8b01875.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du J, Gu Q, Chen J, Fan J, Peng X. A novel fluorescent probe for the ratiometric recognition of protein based on intramolecular charge transfer. Biosens Bioelectron. 2018;265:204–10. https://doi.org/10.1016/j.snb.2018.02.176.

Article  CAS  Google Scholar 

Huang X, Wang X, Shi C, Liu Y, Wei Y. Research on synthesis and self-healing properties of interpenetrating network hydrogels based on reversible covalent and reversible non-covalent bonds. J Polym Res. 2021;28:1–13. https://doi.org/10.1007/s10965-020-02155-9.

Article  CAS  Google Scholar 

Choudhury R, Sharma AK, Paudel P, Wilson P, Pereira AB. In situ generation of a Zwitterionic fluorescent probe for detection of human serum albumin protein. Anal Biochem. 2022;646:114630. https://doi.org/10.1016/j.ab.2022.114630.

Kong L, Huang Z, Chen P, Wang H. Enhanced intersystem crossing to achieve long-lived excitons based on inhibited molecular motion and rigid structure. Dyes Pigm. 2020;173:107886. https://doi.org/10.1016/j.dyepig.2019.107886.

留言 (0)

沒有登入
gif