Autologous mesenchymal stem cells offer a new paradigm for salivary gland regeneration

Tran, O. N., Wang, H., Dean, D. D., Chen, X.-D. & Yeh, C.-K. Stem cell-based restoration salivary gland function. Chapter 14. In: A Roadmap to Nonhematopoietic Stem Cell-Based Therapeutics. X.-D. Chen (editor), Academic Press, pp. 345–366 (2019). https://doi.org/10.1016/b978-0-12-811920-4.00014-8.

Valstar, M. H. et al. The tubarial salivary glands: A potential new organ at risk for radiotherapy. Radiother. Oncol. 154, 292–298 (2021).

Article  PubMed  Google Scholar 

Guggenheimer, J. & Moore, P. A. Xerostomia: Etiology, recognition and treatment. J. Am. Dent. Assoc. 134, 61–69 (2003).

Article  PubMed  Google Scholar 

Smith, C. H. et al. Effect of aging on stimulated salivary flow in adults. J. Am. Geriatr. Soc. 61, 805–808 (2013).

Article  PubMed  Google Scholar 

Tanaka, J. & Mishima, K. Application of regenerative medicine to salivary gland hypofunction. Jpn. Dent. Sci. Rev. 57, 54–59 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Martínez-Acitores, L. R. et al. Xerostomia and salivary flow in patients taking antihypertensive drugs. Int. J. Environ. Res Pu 17, 2478 (2020).

Article  Google Scholar 

Ramírez, L. et al. Risk factors associated with xerostomia and reduced salivary flow in hypertensive patients. Oral Dis. (2021) https://doi.org/10.1111/odi.14090.

Marcott, S. et al. Where dysphagia begins: Polypharmacy and xerostomia. Fed. Pract. Heal Care Prof. Va Dod. Phs 37, 234–241 (2020).

Google Scholar 

Fernandes, M. S. et al. Relationship between polypharmacy, xerostomia, gustatory sensitivity, and swallowing complaints in the elderly: A multidisciplinary approach. J. Texture Stud. 52, 187–196 (2021).

Article  PubMed  Google Scholar 

Ship, J. A., Pillemer, S. R. & Baum, B. J. Xerostomia and the geriatric patient. J. Am. Geriatr. Soc. 50, 535–543 (2002).

Article  PubMed  Google Scholar 

Vissink, A., Jansma, J., Spijkervet, F. K. L., Burlage, F. R. & Coppes, R. P. Oral sequelae of head and neck radiotherapy. Crit. Rev. Oral. Biol. Med 14, 199–212 (2003).

Article  PubMed  Google Scholar 

Langendijk, J. A. et al. Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. J. Clin. Oncol. 26, 3770–3776 (2008).

Article  PubMed  Google Scholar 

Ho, K. F. et al. Developing a CTCAEs patient questionnaire for late toxicity after head and neck radiotherapy. Eur. J. Cancer 45, 1992–1998 (2009).

Article  PubMed  Google Scholar 

Wang, X. Y. et al. Phenylephrine alleviates 131I damage in submandibular gland through promoting endogenous stem cell regeneration via lissencephaly-1 upregulation. Toxicol. Appl Pharm. 396, 114999 (2020).

Article  Google Scholar 

Tanwar, K. S., Rana, N., Mittal, B. R. & Bhattacharya, A. Early quantification of salivary gland function after radioiodine therapy. Indian J. Nucl. Med. 36, 25–31 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Sunavala‐Dossabhoy, G. Radioactive iodine: An unappreciated threat to salivary gland function. Oral. Dis. 24, 198–201 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Hesselink, E. N. K. et al. Effects of radioiodine treatment on salivary gland function in patients with differentiated thyroid carcinoma: A prospective study. J. Nucl. Med 57, 1685–1691 (2016).

Article  Google Scholar 

Mavragani, C. P. Mechanisms and new strategies for primary Sjögren’s Syndrome. Annu Rev. Med. 68, 331–343 (2017).

Article  PubMed  Google Scholar 

Brito-Zerón, P. et al. Sjögren syndrome. Nat. Rev. Dis. Prim. 2, 16047 (2016).

Article  PubMed  Google Scholar 

Rocchi, C. & Emmerson, E. Mouth-watering results: Clinical need, current approaches, and future directions for salivary gland regeneration. Trends Mol. Med 26, 649–669 (2020).

Article  PubMed  Google Scholar 

Weng, P., Luitje, M. E. & Ovitt, C. E. Cellular plasticity in salivary gland regeneration. Oral. Dis. 25, 1837–1839 (2019).

Article  PubMed  Google Scholar 

Vivino, F. et al. Sjogren’s syndrome: An update on disease pathogenesis, clinical manifestations, and treatment. Clin. Immunol. 203, 81–121 (2019).

Article  PubMed  Google Scholar 

Moutsopoulos, H. M. Sjögren’s syndrome: autoimmune epithelitis. Clin. Immunol. Immunop 72, 162–165 (1994).

Article  Google Scholar 

Sandhya, P., Kurien, B., Danda, D. & Scofield, R. Update on pathogenesis of Sjogren’s Syndrome. Curr. Rheumatol. Rev. 13, 5–22 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Lindahl, G., Hedfors, E., Klareskog, L. & Forsum, U. Epithelial HLA-DR expression and T lymphocyte subsets in salivary glands in Sjögren’s syndrome. Clin. Exp. Immunol. 61, 475–482 (1985).

PubMed  PubMed Central  Google Scholar 

Moutsopoulos, H. M. et al. HLA-DR expression by labial minor salivary gland tissues in Sjögren’s syndrome. Ann. Rheum. Dis. 45, 677 (1986).

Article  PubMed  PubMed Central  Google Scholar 

Xanthou, G. et al. “Lymphoid” chemokine messenger RNA expression by epithelial cells in the chronic inflammatory lesion of the salivary glands of Sjögren’s syndrome patients: Possible participation in lymphoid structure formation. Arthritis Rheumatism 44, 408–418 (2001).

Article  PubMed  Google Scholar 

Ogawa, N., Ping, L., Zhenjun, L., Takada, Y. & Sugai, S. Involvement of the interferon‐γ–induced T cell–attracting chemokines, interferon‐γ–inducible 10‐kd protein (CXCL10) and monokine induced by interferon‐γ (CXCL9), in the salivary gland lesions of patients with Sjögren’s syndrome. Arthritis Rheumatism 46, 2730–2741 (2002).

Article  PubMed  Google Scholar 

Jin, J.-O., Shinohara, Y. & Yu, Q. Innate immune signaling induces interleukin-7 production from salivary gland cells and accelerates the development of primary Sjӧgren’s Syndrome in a mouse model. Plos One 8, e77605 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Ciccia, F. et al. Potential involvement of IL-22 and IL-22-producing cells in the inflamed salivary glands of patients with Sjögren’s syndrome. Ann. Rheum. Dis. 71, 295 (2012).

Article  PubMed  Google Scholar 

Cha, S. et al. A dual role for interferon‐γ in the pathogenesis of Sjögren’s Syndrome‐like autoimmune exocrinopathy in the nonobese diabetic mouse. Scand. J. Immunol. 60, 552–565 (2004).

Article  PubMed  Google Scholar 

Pérez, P. et al. Increased acinar damage of salivary glands of patients with Sjögren’s syndrome is paralleled by simultaneous imbalance of matrix metalloproteinase 3/tissue inhibitor of metalloproteinases 1 and matrix metalloproteinase 9/tissue inhibitor of metalloproteinases 1 ratios. Arthritis Rheumatism 52, 2751–2760 (2005).

Article  PubMed  Google Scholar 

Asatsuma, M. et al. Increase in the ratio of matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 in saliva from patients with primary Sjögren’s syndrome. Clin. Chim. Acta 345, 99–104 (2004).

Article  PubMed  Google Scholar 

Rosignoli, F. et al. Defective signalling in salivary glands precedes the autoimmune response in the non‐obese diabetic mouse model of sialadenitis. Clin. Exp. Immunol. 142, 411–418 (2005).

Article  PubMed  PubMed Central  Google Scholar 

Cha, S. et al. Abnormal organogenesis in salivary gland development may initiate adult onset of autoimmune exocrinopathy. Exp. Clin. Immunogenet 18, 143–160 (2001).

Article  PubMed  Google Scholar 

Kiripolsky, J. et al. Immune-intrinsic Myd88 directs the production of antibodies with specificity for extracellular matrix components in primary Sjögren’s syndrome. Front Immunol. 12, 692216 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Rocchi, C., Barazzuol, L. & Coppes, R. P. The evolving definition of salivary gland stem cells. Npj Regen. Med. 6, 4 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Nagler, R. M. The enigmatic mechanism of irradiation-induced damage to the major salivary glands. Oral. Dis. 8, 141–146 (2002).

Article  PubMed  Google Scholar 

Radfar, L. & Sirois, D. A. Structural and functional injury in minipig salivary glands following fractionated exposure to 70 Gy of ionizing radiation: an animal model for human radiation-induced salivary gland injury. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endodontol. 96, 267–274 (2003).

Article  Google Scholar 

Teshima, K. et al. Radiation-induced parotid gland changes in oral cancer patients: Correlation between parotid volume and saliva production. Jpn. J. Clin. Oncol. 40, 42–46 (2010).

Article  PubMed  Google Scholar 

Wang, Z. et al. Radiation‐induced volume changes in parotid and submandibular glands in patients with head and neck cancer receiving postoperative radiotherapy: A longitudinal study. Laryngoscope 119, 1966–1974 (2009).

Article  PubMed  Google Scholar 

Cheng, S. C. H., Wu, V. W. C., Kwong, D. L. W. & Ying, M. T. C. Assessment of post-radiotherapy salivary glands. Br. J. Radiol. 84, 393–402 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Wu, V. W. C. & Leung, K. Y. A review on the assessment of radiation induced salivary gland damage after radiotherapy. Front. Oncol. 9, 1090 (2019).

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif