Mechanistic and Therapeutic Approaches to Occupational Exposure-Associated Allergic and Non-Allergic Asthmatic Disease

Vlahovich KP, Sood A. A 2019 update on occupational lung diseases: a narrative review. Pulm Ther. 2021;7(1):75–87. https://doi.org/10.1007/s41030-020-00143-4.

Article  PubMed  Google Scholar 

Glaser MS, Webber MP, Zeig-Owens R, Weakley J, Liu X, Ye F, et al. Estimating the time interval between exposure to the World Trade Center disaster and incident diagnoses of obstructive airway disease. Am J Epidemiol. 2014;180(3):272–9. https://doi.org/10.1093/aje/kwu137.

Article  PubMed  PubMed Central  Google Scholar 

Niles JK, Webber MP, Cohen HW, Hall CB, Zeig-Owens R, Ye F, et al. The respiratory pyramid: from symptoms to disease in World Trade Center exposed firefighters. Am J Ind Med. 2013;56(8):870–80. https://doi.org/10.1002/ajim.22171.

Article  PubMed  PubMed Central  Google Scholar 

Guidotti TL, Prezant D, de la Hoz RE, Miller A. The evolving spectrum of pulmonary disease in responders to the World Trade Center tragedy. Am J Ind Med. 2011;54(9):649–60. https://doi.org/10.1002/ajim.20987.

Article  PubMed  Google Scholar 

Mazzei MA, Sartorelli P, Bagnacci G, Gentili F, Sisinni AG, Fausto A, et al. Occupational lung diseases: underreported diagnosis in radiological practice. Semin Ultrasound CT MR. 2019;40(1):36–50. https://doi.org/10.1053/j.sult.2018.10.019.

Article  PubMed  Google Scholar 

Anderson SE, Long C, Dotson GS. Occupational allergy. Eur Med J (Chelmsf). 2017;2(2):65–71.

Article  PubMed  Google Scholar 

Cormier M, Lemiere C. Occupational asthma. Int J Tuberc Lung Dis. 2020;24(1):8–21. https://doi.org/10.5588/ijtld.19.0301.

Article  CAS  PubMed  Google Scholar 

Raulf M. Occupational respiratory allergy: risk factors, diagnosis, and management. Handb Exp Pharmacol. 2022;268:213–25. https://doi.org/10.1007/164_2021_472.

Article  CAS  PubMed  Google Scholar 

Arts J. How to assess respiratory sensitization of low molecular weight chemicals? Int J Hyg Environ Health. 2020;225:113469. https://doi.org/10.1016/j.ijheh.2020.113469.

Article  CAS  PubMed  Google Scholar 

Vandenplas O, Godet J, Hurdubaea L, Rifflart C, Suojalehto H, Wiszniewska M, et al. Are high- and low-molecular-weight sensitizing agents associated with different clinical phenotypes of occupational asthma? Allergy. 2019;74(2):261–72. https://doi.org/10.1111/all.13542.

Article  PubMed  Google Scholar 

Lipinska-Ojrzanowska A, Nowakowska-Swirta E, Wiszniewska M, Walusiak-Skorupa J. Bronchial response to high and low molecular weight occupational inhalant allergens. Allergy Asthma Immunol Res. 2020;12(1):164–70. https://doi.org/10.4168/aair.2020.12.1.164.

Article  CAS  PubMed  Google Scholar 

Platts-Mills TAE, Schuyler AJ, Erwin EA, Commins SP, Woodfolk JA. IgE in the diagnosis and treatment of allergic disease. J Allergy Clin Immunol. 2016;137(6):1662–70. https://doi.org/10.1016/j.jaci.2016.04.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Breiteneder H, Diamant Z, Eiwegger T, Fokkens WJ, Traidl-Hoffmann C, Nadeau K, et al. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy. 2019;74(12):2293–311. https://doi.org/10.1111/all.13851.

Article  PubMed  Google Scholar 

Sahiner U, Akdis M, Akdis CA. 1 - Introduction to mechanisms of allergic diseases. In: O’Hehir RE, Holgate ST, Khurana Hershey GK, Sheikh A, editors. Allergy Essentials. 2nd ed. Philadelphia: Elsevier; 2022. p. 1–24.

Google Scholar 

Alvaro-Lozano M, Akdis CA, Akdis M, Alviani C, Angier E, Arasi S, et al. EAACI allergen immunotherapy user’s guide. Pediatr Allergy Immunol. 2020;31(Suppl 25):1–101. https://doi.org/10.1111/pai.13189.

Article  PubMed  PubMed Central  Google Scholar 

Fulkerson PC, Rothenberg ME. Eosinophil development, disease involvement, and therapeutic suppression. Adv Immunol. 2018;138:1–34. https://doi.org/10.1016/bs.ai.2018.03.001.

Article  CAS  PubMed  Google Scholar 

Angkasekwinai P, Dong C. IL-9-producing T cells: potential players in allergy and cancer. Nat Rev Immunol. 2021;21(1):37–48. https://doi.org/10.1038/s41577-020-0396-0.

Article  CAS  PubMed  Google Scholar 

Kabashima K, Irie H. Interleukin-31 as a clinical target for pruritus treatment. Front Med (Lausanne). 2021;8:638325. https://doi.org/10.3389/fmed.2021.638325.

Article  PubMed  PubMed Central  Google Scholar 

Blomme EE, Provoost S, Bazzan E, Van Eeckhoutte HP, Roffel MP, Pollaris L, et al. Innate lymphoid cells in isocyanate-induced asthma: role of microRNA-155. Eur Respir J. 2020. https://doi.org/10.1183/13993003.01289-2019.

Article  PubMed  Google Scholar 

Karta MR, Broide DH, Doherty TA. Insights into group 2 innate lymphoid cells in human airway disease. Curr Allergy Asthma Rep. 2016;16(1):8. https://doi.org/10.1007/s11882-015-0581-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stanbery AG, Shuchi S, von Jakob M, Tait Wojno ED, Ziegler SF. TSLP, IL-33, and IL-25: not just for allergy and helminth infection. J Allergy Clin Immunol. 2022;150(6):1302–13. https://doi.org/10.1016/j.jaci.2022.07.003.

Article  CAS  PubMed  Google Scholar 

Zheng H, Zhang Y, Pan J, Liu N, Qin Y, Qiu L, et al. The role of type 2 innate lymphoid cells in allergic diseases. Front Immunol. 2021;12:586078. https://doi.org/10.3389/fimmu.2021.586078.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez-Gonzalez I, Matha L, Steer CA, Ghaedi M, Poon GF, Takei F. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity. 2016;45(1):198–208. https://doi.org/10.1016/j.immuni.2016.06.017.

Article  CAS  PubMed  Google Scholar 

Kucuksezer UC, Ozdemir C, Akdis M, Akdis CA. Precision/personalized medicine in allergic diseases and asthma. Arch Immunol Ther Exp (Warsz). 2018;66(6):431–42. https://doi.org/10.1007/s00005-018-0526-6.

Article  PubMed  Google Scholar 

Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol. 2014;5:569. https://doi.org/10.3389/fimmu.2014.00569.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E, Brusselle G, et al. After asthma: redefining airways diseases. Lancet. 2018;391(10118):350–400. https://doi.org/10.1016/S0140-6736(17)30879-6.

Article  PubMed  Google Scholar 

Lummus ZL, Wisnewski AV, Bernstein DI. Pathogenesis and disease mechanisms of occupational asthma. Immunol Allergy Clin North Am. 2011;31(4):699–716, vi. https://doi.org/10.1016/j.iac.2011.07.008.

Article  PubMed  PubMed Central  Google Scholar 

Lemiere C, Lavoie G, Doyen V, Vandenplas O. Irritant-induced asthma. J Allergy Clin Immunol Pract. 2022;10(11):2799–806. https://doi.org/10.1016/j.jaip.2022.06.045.

Article  CAS  PubMed  Google Scholar 

Froidure A, Mouthuy J, Durham SR, Chanez P, Sibille Y, Pilette C. Asthma phenotypes and IgE responses. Eur Respir J. 2016;47(1):304–19. https://doi.org/10.1183/13993003.01824-2014.

Article  CAS  PubMed  Google Scholar 

Sinyor B, Concepcion Perez L. Pathophysiology of asthma. StatPearls. Treasure Island (FL) 2022.

Liu MC, Hubbard WC, Proud D, Stealey BA, Galli SJ, Kagey-Sobotka A, et al. Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics. Cellular, mediator, and permeability changes. Am Rev Respir Dis. 1991;144(1):51–8. https://doi.org/10.1164/ajrccm/144.1.51.

Article  CAS  PubMed  Google Scholar 

Stewart AG, Tomlinson PR, Fernandes DJ, Wilson JW, Harris T. Tumor necrosis factor alpha modulates mitogenic responses of human cultured airway smooth muscle. Am J Respir Cell Mol Biol. 1995;12(1):110–9. https://doi.org/10.1165/ajrcmb.12.1.7529028.

Article  CAS  PubMed  Google Scholar 

Chapman DG, Irvin CG. Mechanisms of airway hyper-responsiveness in asthma: the past, present and yet to come. Clin Exp Allergy. 2015;45(4):706–19. https://doi.org/10.1111/cea.12506.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zou Y, Song W, Zhou L, Mao Y, Hong W. House dust mite induces Sonic hedgehog signaling that mediates epithelial-mesenchymal transition in human bronchial epithelial cells. Mol Med Rep. 2019;20(5):4674–82. https://doi.org/10.3892/mmr.2019.10707.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, et al. Airway remodeling in asthma. Front Med (Lausanne). 2020;7:191. https://doi.org/10.3389/fmed.2020.00191. This is a thorough review describing mechanisms of disease progression associated with asthma exacerbation and allergic exposure. This discusses cutting-edge perspectives to further inform allergic respiratory disease mechanisms.

Article  PubMed  Google Scholar 

Evans CM, Kim K, Tuvim MJ, Dickey BF. Mucus hypersecretion in asthma: causes and effects. Curr Opin Pulm Med. 2009;15(1):4–11. https://doi.org/10.1097/MCP.0b013e32831da8d3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sumi Y, Foley S, Daigle S, L’Archeveque J, Olivenstein R, Letuve S, et al. Structural changes and airway remodelling in occupational asthma at a mean interval of 14 years after cessation of exposure. Clin Exp Allergy. 2007;37(12):1781–7. https://doi.org/10.1111/j.1365-2222.2007.02828.x.

Article 

留言 (0)

沒有登入
gif