A Toolbox of Bone Consolidation for the Interventional Radiologist

Nussbaum DA, Gailloud P, Murphy K. The chemistry of acrylic bone cements and implications for clinical use in image-guided therapy. J Vasc Interv Radiol. 2004;15(2 Pt 1):121–6.

Article  PubMed  Google Scholar 

Arora M, et al. Polymethylmethacrylate bone cements and additives: a review of the literature. World J Orthop. 2013;4(2):67–74.

Article  PubMed  PubMed Central  Google Scholar 

Acrylic cement in orthopaedic surgery. By JOHN CHARNLEY, C.B.E., D.Sc., F.R.C.S., Consultant Orthopaedic Surgeon, Centre for Hip Surgery, Wrighton Hospital, near Wigan. 10 × 7 1/2 in. Pp. 131 + vi, with 77 illustrations. 1970. Edinburgh: E. × S. Livingstone Ltd. 60s. British Journal of Surgery, 2005. 57(11): p. 874–874.

Phull SS, et al. Bone cement as a local chemotherapeutic drug delivery carrier in orthopedic oncology: a review. J Bone Oncol. 2021;26: 100345.

Article  PubMed  Google Scholar 

Bistolfi, A., et al., PMMA-based bone cements and the problem of joint arthroplasty infections: status and new perspectives. Materials (Basel), 2019. 12(23).

Cazzato RL, et al. Percutaneous radiofrequency ablation of painful spinal metastasis: A systematic literature assessment of analgesia and safety. Int J Hyperthermia. 2018;34(8):1272–81.

Article  PubMed  Google Scholar 

Deschamps F, et al. Cementoplasty of metastases of the proximal femur: is it a safe palliative option? J Vasc Interv Radiol. 2012;23(10):1311–6.

Article  PubMed  Google Scholar 

Cazzato RL, et al. Percutaneous long bone cementoplasty for palliation of malignant lesions of the limbs: a systematic review. Cardiovasc Intervent Radiol. 2015;38(6):1563–72.

Article  PubMed  Google Scholar 

Baroud G, et al. Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J. 2003;12(4):421–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim J-M, et al. Effect of bone cement volume and stiffness on occurrences of adjacent vertebral fractures after vertebroplasty. J Korean Neurosurg Soc. 2012;52(5):435.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marcia S, et al. Effectiveness of a bone substitute (CERAMENT™) as an alternative to PMMA in percutaneous vertebroplasty: 1-year follow-up on clinical outcome. Eur Spine J. 2012;21(Suppl 1):S112–8.

Article  PubMed  Google Scholar 

Blasco J, et al. Effect of vertebroplasty on pain relief, quality of life, and the incidence of new vertebral fractures: a 12-month randomized follow-up, controlled trial. J Bone Miner Res. 2012;27(5):1159–66.

Article  PubMed  Google Scholar 

Hierholzer J, et al. Incidence of symptomatic vertebral fractures in patients after percutaneous vertebroplasty. Cardiovasc Intervent Radiol. 2008;31(6):1178–83.

Article  PubMed  Google Scholar 

Li Y-A, et al. Subsequent vertebral fracture after vertebroplasty: incidence and analysis of risk factors. Spine. 2012;37(3):179–83.

Article  CAS  PubMed  Google Scholar 

Trout AT, Kallmes DF, Kaufmann TJ. New fractures after vertebroplasty: adjacent fractures occur significantly sooner. AJNR Am J Neuroradiol. 2006;27(1):217–23.

CAS  PubMed  PubMed Central  Google Scholar 

Fribourg D, et al. Incidence of subsequent vertebral fracture after kyphoplasty. Spine. 2004;29(20):2270–6.

Article  PubMed  Google Scholar 

Tseng YY, et al. Repeated and multiple new vertebral compression fractures after percutaneous transpedicular vertebroplasty. Spine Phila Pa (1976). 2009;34(18):1917–22.

Article  PubMed  Google Scholar 

Filippiadis DK, et al. Percutaneous vertebroplasty and kyphoplasty: current status, new developments and old controversies. Cardiovasc Intervent Radiol. 2017;40(12):1815–23.

Article  PubMed  Google Scholar 

Ginebra M-P, et al. Calcium phosphate cements as drug delivery materials. Adv Drug Deliv Rev. 2012;64(12):1090–110.

Article  CAS  PubMed  Google Scholar 

Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery systems: a review. J Control Release. 2006;113(2):102–10.

Article  CAS  PubMed  Google Scholar 

Şahin, E., Calcium phosphate bone cements, in Cement Based Materials, H.E.-D.M. Saleh and R.O.A. Rahman, Editors. 2018, InTech.

Lim T-H, et al. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine. 2002;27(12):1297–302.

Article  PubMed  Google Scholar 

Grafe IA, et al. Calcium-phosphate and polymethylmethacrylate cement in long-term outcome after kyphoplasty of painful osteoporotic vertebral fractures. Spine. 2008;33(11):1284–90.

Article  PubMed  Google Scholar 

Espanol M, et al. Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications. Acta Biomater. 2009;5(7):2752–62.

Article  CAS  PubMed  Google Scholar 

Schulte TL, et al. Biomechanical comparison of vertebral augmentation with silicone and PMMA cement and two filling grades. Eur Spine J. 2013;22(12):2695–701.

Article  PubMed  PubMed Central  Google Scholar 

Gasbarrini A, et al. Elastoplasty as a promising novel technique: vertebral augmentation with an elastic silicone-based polymer. Acta Orthop Traumatol Turc. 2017;51(3):209–14.

Article  PubMed  PubMed Central  Google Scholar 

Bornemann R, et al. Elastoplasty: a silicon polymer as a new filling material for kyphoplasty in comparison to PMMA. Pain Physician. 2016;19(6):E885–92.

Article  PubMed  Google Scholar 

Perry CR, Pearson RL. Local antibiotic delivery in the treatment of bone and joint infections. Clin Orthop Relat Res. 1991;263:215–26.

Article  Google Scholar 

Slane J, Gietman B, Squire M, Antibiotic elution from acrylic bone cement loaded with high doses of tobramycin and vancomycin: antibiotic elution from acrylic bone cement. J Orthopaedic Res, 2017.

Morejón Alonso L, et al. Evaluation of acrylic bone cements with single and combined antibiotics: release behavior and <i>in vitro</i> antibacterial effectiveness. Int J Polym Mater Polym Biomater. 2018;67(14):830–8.

Article  Google Scholar 

Chen L, et al. Fabrication of the antibiotic-releasing gelatin/PMMA bone cement. Colloids Surf, B. 2019;183: 110448.

Article  CAS  Google Scholar 

Wekwejt M, et al. Antibacterial activity and cytocompatibility of bone cement enriched with antibiotic, nanosilver, and nanocopper for bone regeneration. Nanomaterials. 2019;9(8):1114.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Slane J, et al. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Mater Sci Eng C. 2015;48:188–96.

Article  CAS  Google Scholar 

Prokopovich P, et al, A novel bone cement impregnated with silver&ndash;tiopronin nanoparticles: its antimicrobial, cytotoxic, and mechanical properties. Int J Nanomed, 2013: 2227

Prokopovich P, et al. Potent antimicrobial activity of bone cement encapsulating silver nanoparticles capped with oleic acid. J Biomed Mater Res B Appl Biomater. 2015;103(2):273–81.

Article  PubMed  Google Scholar 

Subbiahdoss G, et al. Microbial biofilm growth vs. tissue integration: “The race for the surface” experimentally studied. Acta Biomater. 2009;5(5):1399–404.

Article  CAS  PubMed  Google Scholar 

Serbetci K, Korkusuz F, Hasirci N. Thermal and mechanical properties of hydroxyapatite impregnated acrylic bone cements. Polym Testing. 2004;23(2):145–55.

Article  CAS  Google Scholar 

Mousa WF, et al. Biological and mechanical properties of PMMA-based bioactive bone cements. Biomaterials. 2000;21(21):2137–46.

Article  CAS  PubMed  Google Scholar 

Miola M, et al. Antibacterial and bioactive composite bone cements containing surface silver-doped glass particles. Biomed Mater. 2015;10(5): 055014.

Article  PubMed  Google Scholar 

Miola M, et al. Antibiotic-free composite bone cements with antibacterial and bioactive properties. A preliminary study. Mater Sci Eng C. 2014;43:65–75.

Article  CAS  Google Scholar 

Miola M, et al. Composites bone cements with different viscosities loaded with a bioactive and antibacterial glass. J Mater Sci. 2017;52(9):5133–46.

Article  CAS  Google Scholar 

Verné E, et al. Antibacterial and bioactive composite bone cements. Curr Mater Sci. 2020;12(2):144–53.

Article  Google Scholar 

Kim H, et al. The cytotoxic effect of methotrexate loaded bone cement on osteosarcoma cell lines. Int Orthop. 2001;25(6):343–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang C, et al. Bone microstructure and regional distribution of osteoblast and osteoclast activity in the osteonecrotic femoral head. PLoS ONE. 2014;9(5): e96361.

Article  PubMed  PubMed Central  Google Scholar 

Ozben H. Cisplatin loaded PMMA: mechanical properties, surface analysis and effects on Saos-2 cell culture. Acta Orthop Traumatol Turc. 2013;47(3):184–92.

Article  PubMed 

留言 (0)

沒有登入
gif