Role of phytocompounds as the potential anti-viral agent: an overview

Akbar MU, Zia KM, Nazir A, Iqbal J, Ejaz SA, Akash MSH (2018) Pluronic-based mixed polymeric micelles enhance the therapeutic potential of curcumin. AAPS PharmSciTech. https://doi.org/10.1208/s12249-018-1098-9

Article  PubMed  Google Scholar 

Alarcón B, González ME, Carrasco L (1988) Megalomycin C, a macrolide antibiotic that blocks protein glycosylation and shows antiviral activity. FEBS Lett. https://doi.org/10.1016/0014-5793(88)80732-4

Article  PubMed  Google Scholar 

Álvarez ÁL, Habtemariam S, Abdel Moneim AE, Melón S, Dalton KP, Parra F (2015) A spiroketal-enol ether derivative from Tanacetum vulgare selectively inhibits HSV-1 and HSV-2 glycoprotein accumulation in vero cells. Antiviral Res. https://doi.org/10.1016/j.antiviral.2015.04.004

Article  PubMed  Google Scholar 

Badoni H, Painuli S, Semwal P (2015) In silico screening of phytoactive components against Junin, Hanta, Dengue, Marburg and Ebola Viruses. J Chem Pharm Res 7:209–224

CAS  Google Scholar 

Bai R, Zhang XJ, Li YL, Liu JP, Zhang HB, Xiao WL, Pu JX, Sun HD, Zheng YT, Liu LX (2015) SJP-L-5, a novel small-molecule compound, inhibits HIV-1 infection by blocking viral DNA nuclear entry Microbe-host interactions and microbial pathogenicity. BMC Microbiol. https://doi.org/10.1186/s12866-015-0605-3

Article  PubMed  PubMed Central  Google Scholar 

Baikerikar S (2017) Curcumin and natural derivatives inhibit Ebola viral proteins: an in silico approach. Pharmacognosy Res. https://doi.org/10.4103/pr.pr_30_17

Article  PubMed  PubMed Central  Google Scholar 

Bakrim S, Aboulaghras S, El Menyiy N, El Omari N, Assaggaf H, Lee LH, Montesano D, Gallo M, Zengin G, Aldhaheri Y, Bouyahya A (2022) Phytochemical compounds and nanoparticles as phytochemical delivery systems for Alzheimer’s disease management. Molecules 27(24):9043. https://doi.org/10.3390/molecules27249043

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bang S, Quy Ha TK, Lee C, Li W, Oh WK, Shim SH (2016) Antiviral activities of compounds from aerial parts of Salvia plebeia R. Br. J Ethnopharmacol. https://doi.org/10.1016/j.jep.2016.09.030

Bauer A, Brönstrup M (2014) Industrial natural product chemistry for drug discovery and development. Nat Prod Rep. https://doi.org/10.1039/c3np70058e

Article  PubMed  Google Scholar 

Beck CR, Sokal R, Arunachalam N, Puleston R, Cichowska A, Kessel A, Zambon M, Nguyen-Van-Tam JS (2013) Neuraminidase inhibitors for influenza: a review and public health perspective in the aftermath of the 2009 pandemic. Influenza Other Respi. Viruses. https://doi.org/10.1111/irv.12048

Bedows E, Hatfield GM (1982) An investigation of the antiviral activity of Podophyllum peltatum. J Nat Prod. https://doi.org/10.1021/np50024a015

Article  PubMed  Google Scholar 

Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A (2020) Antiviral effect of phytochemicals from medicinal plants: applications and drug delivery strategies. Drug Deliv Transl Res. https://doi.org/10.1007/s13346-019-00691-6

Bhakat S, Soliman MES (2015) Chikungunya virus (CHIKV) inhibitors from natural sources: a medicinal chemistry perspective. J Nat Med. https://doi.org/10.1007/s11418-015-0910-z

Article  PubMed  PubMed Central  Google Scholar 

Biedenkopf N, Lange-Grünweller K, Schulte FW, Weißer A, Müller C, Becker D, Becker S, Hartmann RK, Grünweller A (2017) The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antiviral Res 137:76–81. https://doi.org/10.1016/j.antiviral.2016.11.011

Article  CAS  PubMed  Google Scholar 

Byler KG, Ogungbe IV, Setzer WN (2016) In-silico screening for anti-Zika virus phytochemicals. J Mol Graph Model. https://doi.org/10.1016/j.jmgm.2016.08.011

Article  PubMed  PubMed Central  Google Scholar 

Cheng YB, Chien YT, Lee JC, Tseng CK, Wang HC, Lo IW, Wu YH, Wang SY, Wu YC, Chang FR (2014) Limonoids from the seeds of swietenia macrophylla with inhibitory activity against dengue virus 2. J Nat Prod. https://doi.org/10.1021/np5002829

Article  PubMed  PubMed Central  Google Scholar 

Chung CY, Liu CH, Burnouf T, Wang GH, Chang SP, Jassey A, Tai CJ, Tai CJ, Huang CJ, Richardson CD, Yen MH, Lin CC, Lin LT (2016) Activity-based and fraction-guided analysis of Phyllanthus urinaria identifies loliolide as a potent inhibitor of hepatitis C virus entry. Antiviral Res. https://doi.org/10.1016/j.antiviral.2016.03.012

Article  PubMed  Google Scholar 

Clain E, Haddad JG, Koishi AC, Sinigaglia L, Rachidi W, Desprès P, Duarte dos Santos CN, Guiraud P, Jouvenet N, El Kalamouni C (2019) The polyphenol-rich extract from psiloxylon mauritianum, an endemic medicinal plant from reunion island, inhibits the early stages of dengue and zika virus infection. Int J Mol Sci. https://doi.org/10.3390/ijms20081860

Article  PubMed  PubMed Central  Google Scholar 

Clain E, Sinigaglia L, Koishi AC, Gorgette O, Gadea G, Viranaicken W, Krejbich-Trotot P, Mavingui P, Desprès P, Dos Santos CND, Guiraud P, Jouvenet N, El Kalamouni C (2018) Extract from Aphloia theiformis, an edible indigenous plant from Reunion Island, impairs Zika virus attachment to the host cell surface. Sci Rep. https://doi.org/10.1038/s41598-018-29183-2

Cock IE, Van Vuuren SF (2020) The traditional use of southern African medicinal plants in the treatment of viral respiratory diseases: a review of the ethnobotany and scientific evaluations. J Ethnopharmacol. https://doi.org/10.1016/j.jep.2020.113194

Article  PubMed  PubMed Central  Google Scholar 

Corlay N, Delang L, Girard-Valenciennes E, Neyts J, Clerc P, Smadja J, Guéritte F, Leyssen P, Litaudon M (2014) Tigliane diterpenes from Croton mauritianus as inhibitors of chikungunya virus replication. Fitoterapia. https://doi.org/10.1016/j.fitote.2014.05.015

Article  PubMed  Google Scholar 

Cragg GM, Newman DJ (2005) Biodiversity: a continuing source of novel drug leads, in: Pure and applied chemistry. https://doi.org/10.1351/pac200577010007

Cui H, Xu B, Wu T, Xu J, Yuan Y, Gu Q (2014) Potential antiviral lignans from the roots of saururus chinensis with activity against epstein-barr virus lytic replication. J Nat Prod. https://doi.org/10.1021/np400757k

Article  PubMed  Google Scholar 

Dao TT, Nguyen PH, Lee HS, Kim E, Park J, Lim SI, Oh WK (2011) Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg Med Chem Lett 21:294–298. https://doi.org/10.1016/j.bmcl.2010.11.016

Article  CAS  PubMed  Google Scholar 

De Smet PAGM (2002) Herbal remedies. N Engl J Med 347:2046–2056. https://doi.org/10.1056/NEJMra020398

Article  PubMed  Google Scholar 

Deas TS, Binduga-Gajewska I, Tilgner M, Ren P, Stein DA, Moulton HM, Iversen PL, Kauffman EB, Kramer LD, Shi P-Y (2005) Inhibition of flavivirus infections by antisense oligomers specifically suppressing viral translation and RNA replication. J Virol. https://doi.org/10.1128/jvi.79.8.4599-4609.2005

Article  PubMed  PubMed Central  Google Scholar 

Dwevedi A, Dwivedi R, Sharma Y (2016) Exploration of phytochemicals found in Terminalia sp. and their antiretroviral activities. Pharmacogn Rev. https://doi.org/10.4103/0973-7847.194048

Eggers M, Jungke P, Wolkinger V, Bauer R, Kessler U, Frank B (2022) Antiviral activity of plant juices and green tea against SARS-CoV-2 and influenza virus. Phytother Res 36(5):2109–2115. https://doi.org/10.1002/ptr.7431

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esimone CO, Eck G, Nworu CS, Hoffmann D, Uberla K, Proksch P (2010) Dammarenolic acid, a secodammarane triterpenoid from Aglaia sp. shows potent anti-retroviral activity in vitro. Phytomedicine 17:540–547. https://doi.org/10.1016/j.phymed.2009.10.015

Article  CAS  PubMed  Google Scholar 

Esposito F, Carli I, Del Vecchio C, X L, Corona A, Grandi N, Piano D, Maccioni E, Distinto S, Parolin C, Tramontano E (2016) Sennoside A, derived from the traditional chinese medicine plant Rheum L., is a new dual HIV-1 inhibitor effective on HIV-1 replication. Phytomedicine. https://doi.org/10.1016/j.phymed.2016.08.001

Ferreira FL, Hauck MS, Duarte LP, de Magalhães JC, da Silva LSM, Pimenta LPS, Lopes JCD, Mercadante‑Simões MO, Vieira Filho SA (2019) Zika virus activity of the leaf and branch extracts of Tontelea micrantha and its hexane extracts phytochemical study. J Braz Chem Soc. https://doi.org/10.21577/0103-5053.20180210

Ghildiyal R, Prakash V, Chaudhary VK, Gupta V, Gabrani R, (2020) Phytochemicals as antiviral agents: recent updates, in: Plant-derived bioactives: production, properties and therapeutic applications. https://doi.org/10.1007/978-981-15-1761-7_12

Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B (2009) Focus on antivirally active sulfated polysaccharides: from structure-activity analysis to clinical evaluation. Glycobiology. https://doi.org/10.1093/glycob/cwn092

Article  PubMed  Google Scholar 

Goktas Z, Zu Y, Abbasi M, Galyean S, Wu D, Fan Z, Wang S (2020) Recent advances in nanoencapsulation of phytochemicals to combat obesity and its comorbidities. J Agric Food Chem 68(31):8119–8131. https://doi.org/10.1021/acs.jafc.0c00131

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gómez-Calderón C, Mesa-Castro C, Robledo S, Gómez S, Bolivar-Avila S, Diaz-Castillo F, Martínez-Gutierrez M (2017) Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on dengue and chikungunya virus infections. BMC Complement Altern Med. https://doi.org/10.1186/s12906-017-1562-1

Article  PubMed  PubMed Central  Google Scholar 

Huang TJ, Tsai YC, Chiang SY, Wang GJ, Kuo YC, Chang YC, Wu YY, Wu YC (2014) Anti-viral effect of a compound isolated from Liriope platyphylla against hepatitis B virus in vitro. Virus Res. https://doi.org/10.1016/j.virusres.2014.07.015

Article  PubMed  PubMed Central  Google Scholar 

Huerta-Reyes M, Gaitán-Cepeda LA, Sánchez-Vargas LO (2022) Punica granatum as anticandidal and anti-HIV agent: an HIV oral cavity potential drug. Plants 11(19):2622. https://doi.org/10.3390/plants11192622

Article  CAS  PubMed  PubMed Central  Google Scholar 

Idriss H, Siddig B, González-Maldonado P, Elkhair HM, Alakhras AI, Abdallah EM, Elzupir AO, Sotelo PH (2023a) Effect of the phytochemical agents against the SARS-CoV and some of them selected for application to COVID-19: a mini-review. Curr Pharm Biotechnol. https://doi.org/10.2174/1389201021666200703201458

Article  Google Scholar 

Idrees M, Khan S, Memon NH, Zhang Z (2021) Effect of the Phytochemical Agents against the SARS-CoV and Some of them Selected for Application to COVID-19: A Mini-Review. Curr Pharm Biotechnol. 22:444–450 Available at: https://pubmed.ncbi.nlm.nih.gov/32619167/. Accessed 6 May 2023

Idriss H, Siddig B, González-Maldonado P, Elkhair HM, Alakhras AI, Abdallah EM, Elzupir AO, Sotelo PH (2023b) Inhibitory activity of Saussurea costus extract against bacteria, candida, herpes, and SARS-CoV-2. Plants 12(3):460. https://doi.org/10.3390/plants12030460

Article  CAS  PubMed  PubMed Central  Google Scholar 

Issa SS, Sokornova SV, Zhidkin RR, Matveeva TV (2022) The main protease of SARS-CoV-2 as a target for phytochemicals against coronavirus. Plants 11(14):1862. https://doi.org/10.3390/plants11141862

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivanova E, Toshkova R, Serkedjieva J (2005) A plant polyphenol-rich extract restores the suppressed functions of phagocytes in influenza virus-infected mice. Microbes Infect. https://doi.org/10.1016/j.micinf.2004.11.013

Article  PubMed  Google Scholar 

Jain J, Kumar A, Narayanan V, Ramaswamy RS, Sathiyarajeswaran P, Shree Devi MS, Kannan M, Sunil S (2020) Antiviral activity of ethanolic extract of Nilavembu Kudineer against dengue and chikungunya virus through in vitro evaluation. J Ayurveda Integr Med. https://doi.org/10.1016/j.jaim.2018.05.006

Article

留言 (0)

沒有登入
gif