CTLA4-Ig protects tacrolimus-induced oxidative stress via inhibiting the AKT/FOXO3 signaling ...

1. Li L, Sun Q. Renal transplantation in China: ten years of experience at Nanjing Jinling Hospital. In: Clinical transplants 2006. Los Angeles (CA): Terasaki Research Institute, 2006. 2. Tomasoni S, Remuzzi G, Benigni A. Allograft rejection: acute and chronic studies. Contrib Nephrol 2008;159:122–134.
crossref pmid
3. Miano TA, Flesch JD, Feng R, et al. Early tacrolimus concentrations after lung transplant are predicted by combined clinical and genetic factors and associated with acute kidney injury. Clin Pharmacol Ther 2020;107:462–470.
pmid
4. Braithwaite HE, Darley DR, Brett J, Day RO, Carland JE. Identifying the association between tacrolimus exposure and toxicity in heart and lung transplant recipients: a systematic review. Transplant Rev (Orlando) 2021;35:100610.
crossref pmid
5. Lim SW, Shin YJ, Luo K, et al. Effect of Klotho on autophagy clearance in tacrolimus-induced renal injury. FASEB J 2019;33:2694–2706.
crossref pmid pdf
6. Lim SW, Jin L, Piao SG, Chung BH, Yang CW. Inhibition of dipeptidyl peptidase IV protects tacrolimus-induced kidney injury. Lab Invest 2015;95:1174–1185.
crossref pmid pdf
7. Lee D, Lee DS, Jung K, et al. Protective effect of ginsenoside Rb1 against tacrolimus-induced apoptosis in renal proximal tubular LLC-PK1 cells. J Ginseng Res 2018;42:75–80.
crossref pmid pmc
8. Greenfield EA, Nguyen KA, Kuchroo VK. CD28/B7 costimulation: a review. Crit Rev Immunol 1998;18:389–418.
crossref pmid
9. Pilat N, Mahr B, Gattringer M, Baranyi U, Wekerle T. CTLA4Ig improves murine iTreg induction via TGFβ and suppressor function in vitro. J Immunol Res 2018;2018:2484825.
crossref pmid pmc pdf
10. Jaiswal SR, Bhakuni P, Aiyer HM, Soni M, Bansal S, Chakrabarti S. CTLA4Ig in an extended schedule along with sirolimus improves outcome with a distinct pattern of immune reconstitution following post-transplantation cyclophosphamide-based haploidentical transplantation for hemoglobinopathies. Biol Blood Marrow Transplant 2020;26:1469–1476.
crossref pmid
11. Kumar D, LeCorchick S, Gupta G. Belatacept as an alternative to calcineurin inhibitors in patients with solid organ transplants. Front Med (Lausanne) 2017;4:60.
crossref pmid pmc
12. Jin L, Lim SW, Jin J, et al. Effect of conversion to CTLA4Ig on tacrolimus-induced diabetic rats. Transplantation 2018;102:e137–e146.
crossref pmid
13. Wang Y, Lin Y, Wang L, et al. TREM2 ameliorates neuroinflammatory response and cognitive impairment via PI3K/AKT/ FoxO3a signaling pathway in Alzheimer’s disease mice. Aging (Albany NY) 2020;12:20862–20879.
pmid pmc
14. Zhang X, Wang L, Peng L, et al. Dihydromyricetin protects HUVECs of oxidative damage induced by sodium nitroprusside through activating PI3K/Akt/FoxO3a signalling pathway. J Cell Mol Med 2019;23:4829–4838.
crossref pmid pmc pdf
15. Yoon HE, Kim SJ, Kim SJ, Chung S, Shin SJ. Tempol attenuates renal fibrosis in mice with unilateral ureteral obstruction: the role of PI3K-Akt-FoxO3a signaling. J Korean Med Sci 2014;29:230–237.
crossref pmid pmc pdf
16. Zhao S, Wang L, Zhang C, et al. Inhibitor of growth 3 induces cell death by regulating cell proliferation, apoptosis and cell cycle arrest by blocking the PI3K/AKT pathway. Cancer Gene Ther 2018;25:240–247.
crossref pmid pdf
17. Jin L, Lim SW, Doh KC, et al. Dipeptidyl peptidase IV inhibitor MK-0626 attenuates pancreatic islet injury in tacrolimus-induced diabetic rats. PLoS One 2014;9:e100798.
crossref pmid pmc
18. Chevalier RL, Goyal S, Kim A, Chang AY, Landau D, LeRoith D. Renal tubulointerstitial injury from ureteral obstruction in the neonatal rat is attenuated by IGF-1. Kidney Int 2000;57:882–890.
crossref pmid
19. Haffner D, Grund A, Leifheit-Nestler M. Renal effects of growth hormone in health and in kidney disease. Pediatr Nephrol 2021;36:2511–2530.
crossref pmid pmc pdf
20. Fu R, Tajima S, Shigematsu T, et al. Establishment of an experimental rat model of tacrolimus-induced kidney injury accompanied by interstitial fibrosis. Toxicol Lett 2021;341:43–50.
crossref pmid
21. Jiang YJ, Cui S, Luo K, et al. Nicotine exacerbates tacrolimus-induced renal injury by programmed cell death. Korean J Intern Med 2021;36:1437–1449.
crossref pmid pmc pdf
22. Jin J, Jin L, Luo K, Lim SW, Chung BH, Yang CW. Effect of empagliflozin on tacrolimus-induced pancreas islet dysfunction and renal injury. Am J Transplant 2017;17:2601–2616.
crossref pmid pdf
23. Yang CC, Sung PH, Chiang JY, et al. Combined tacrolimus and melatonin effectively protected kidney against acute ischemia-reperfusion injury. FASEB J 2021;35:e21661.
crossref pmid pdf
24. Piao SG, Lim SW, Doh KC, et al. Combined treatment of tacrolimus and everolimus increases oxidative stress by pharmacological interactions. Transplantation 2014;98:22–28.
crossref pmid
25. Chen Y, Feng X, Hu X, et al. Dexmedetomidine ameliorates acute stress-induced kidney injury by attenuating oxidative stress and apoptosis through inhibition of the ROS/JNK signaling pathway. Oxid Med Cell Longev 2018;2018:4035310.
crossref pmid pmc pdf
26. García-Pérez E, Ryu D, Kim HY, Kim HD, Lee HJ. Human proximal tubule epithelial cells (HK-2) as a sensitive in vitro system for ochratoxin a induced oxidative stress. Toxins (Basel) 2021;13:787.
crossref pmid pmc
27. Wang YL, Lee YH, Hsu YH, et al. The kidney-related effects of polystyrene microplastics on human kidney proximal tubular epithelial cells HK-2 and male C57BL/6 mice. Environ Health Perspect 2021;129:57003.
crossref pmid pmc
28. Gao P, Du X, Liu L, et al. Astragaloside IV alleviates tacrolimus-induced chronic nephrotoxicity via p62-Keap1-Nrf2 pathway. Front Pharmacol 2021;11:610102.
crossref pmid pmc
29. Zheng HL, Zhang HY, Zhu CL, et al. L-Carnitine protects against tacrolimus-induced renal injury by attenuating programmed cell death via PI3K/AKT/PTEN signaling. Acta Pharmacol Sin 2021;42:77–87.
crossref pmid pmc pdf
30. Guerrieri D, Ambrosi NG, Romeo H, et al. Secretory leukocyte proteinase inhibitor protects acute kidney injury through immune and non-immune pathways. Shock 2021;56:1019–1027.
crossref pmid
31. Tzivion G, Dobson M, Ramakrishnan G. FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta 2011;1813:1938–1945.
crossref pmid
32. Kurosu H, Yamamoto M, Clark JD, et al. Suppression of aging in mice by the hormone Klotho. Science 2005;309:1829–1833.
crossref pmid pmc
33. Yamamoto M, Clark JD, Pastor JV, et al. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 2005;280:38029–38034.
crossref pmid pmc
34. Unger RH. Klotho-induced insulin resistance: a blessing in disguise? Nat Med 2006;12:56–57.
crossref pmid pdf
35. Emerling BM, Weinberg F, Liu JL, Mak TW, Chandel NS. PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through forkhead transcription factor 3a (FOXO3a). Proc Natl Acad Sci U S A 2008;105:2622–2627.
crossref pmid pmc
36. Lim SW, Jin L, Luo K, et al. Klotho enhances FoxO3-mediated manganese superoxide dismutase expression by negatively regulating PI3K/AKT pathway during tacrolimus-induced oxidative stress. Cell Death Dis 2017;8:e2972.
crossref pdf
37. Reyes HD, Carlson MJ, Devor EJ, et al. Downregulation of FOXO1 mRNA levels predicts treatment failure in patients with endometrial pathology conservatively managed with progestin-containing intrauterine devices. Gynecol Oncol 2016;140:152–160.
crossref pmid pmc
38. Du M, Wang Q, Li W, et al. Overexpression of FOXO1 ameliorates the podocyte epithelial-mesenchymal transition induced by high glucose in vitro and in vivo. Biochem Biophys Res Commun 2016;471:416–422.
crossref pmid
39. Li W, Wang Q, Du M, et al. Effects of overexpressing FoxO1 on apoptosis in glomeruli of diabetic mice and in podocytes cultured in high glucose medium. Biochem Biophys Res Commun 2016;478:612–617.
crossref pmid
40. Fallarino F, Bianchi R, Orabona C, et al. CTLA-4-Ig activates forkhead transcription factors and protects dendritic cells from oxidative stress in nonobese diabetic mice. J Exp Med 2004;200:1051–1062.
crossref pmid pmc pdf
41. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 2005;15:316–328.
crossref pmid
42. Graille M, Wild P, Sauvain JJ, Hemmendinger M, Guseva Canu I, Hopf NB. Urinary 8-OHdG as a biomarker for oxidative stress: a systematic literature review and meta-analysis. Int J Mol Sci 2020;21:3743.
crossref pmid pmc
43. Soulage CO, Pelletier CC, Florens N, et al. Two toxic lipid aldehydes, 4-hydroxy-2-hexenal (4-HHE) and 4-hydroxy-2-nonenal (4-HNE), accumulate in patients with chronic kidney disease. Toxins (Basel) 2020;12:567.
crossref pmid pmc
44. Saeki T, Ichiba M, Tanabe N, et al. Expression of oxidative stress-related molecules in circulating leukocytes and urine in patients with chronic viral hepatitis. Liver Int 2006;26:157–165.
crossref pmid
45. Homma T, Fujii J. Application of glutathione as anti-oxidative and anti-aging drugs. Curr Drug Metab 2015;16:560–571.
crossref
46. Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 2016;95:27–42.
crossref pmid
47. Kim JL, Reader BF, Dumond C, et al. Pegylated-catalase is protective in lung ischemic injury and oxidative stress. Ann Thorac Surg 2021;111:1019–1027.
crossref pmid
48. Tahir M, Rehman MYA, Malik RN. Heavy metal-associated oxidative stress and glutathione S-transferase polymorphisms among E-waste workers in Pakistan. Environ Geochem Health 2021;43:4441–4458.
crossref pmid pdf
49. Qin G, Zhou Y, Guo F, et al. Overexpression of the FoxO1 ameliorates mesangial cell dysfunction in male diabetic rats. Mol Endocrinol 2015;29:1080–1091.
crossref pmid pmc
50. Dávila D, Torres-Aleman I. Neuronal death by oxidative stress involves activation of FOXO3 through a two-arm pathway that activates stress kinases and attenuates insulin-like growth factor I signaling. Mol Biol Cell 2008;19:2014–2025.
crossref pmid pmc
51. Genis L, Dávila D, Fernandez S, Pozo-Rodrigálvarez A, Martínez-Murillo R, Torres-Aleman I. Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury. F1000Res 2014;3:28.
crossref pmid pmc pdf
52. Lehtinen MK, Yuan Z, Boag PR, et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 2006;125:987–1001.
crossref pmid

留言 (0)

沒有登入
gif