Construction and evaluation of a phospholipid-based phase transition in situ gel system for brexpiprazole

Mai Y, et al. Topical formulation based on disease-specific nanoparticles for single-dose cure of psoriasis. J Control Release. 2022;349:354–66.

Article  CAS  PubMed  Google Scholar 

Xu W, et al. Analysis of Factors Influencing Telemedicine-Based Psychiatric Extended Care and Care of Psychiatric Patients. J Healthc Eng. 2022;2022:9434820.

Article  PubMed  PubMed Central  Google Scholar 

Aladeen T, et al. The use of brexpiprazole amongst individuals with insufficient outcomes with aripiprazole or bupropion: A case series. Perspect Psychiatr Care. 2018;54(4):507–13.

Article  PubMed  Google Scholar 

Crapanzano C, et al. Brexpiprazole 2 mg Starting Dose: A Case Series. Psychiatr Danub. 2022;34(2):308–9.

Article  PubMed  Google Scholar 

Rawat A, Bhardwaj U, Burgess DJ. Comparison of in vitro-in vivo release of Risperdal((R)) Consta((R)) microspheres. Int J Pharm. 2012;434(1–2):115–21.

Article  CAS  PubMed  Google Scholar 

Shiadeh SNR, et al. Lipid-liquid crystals for 2 months controlled risperidone release: In-vitro evaluation and pharmacokinetics in rabbits. Int J Pharm. 2022;618.

Article  CAS  PubMed  Google Scholar 

Brexpiprazole for schizophrenia. Aust Prescr. 2017;40(5):197–8.

Article  Google Scholar 

Orsolini L, et al. A case report of clozapine-treatment-resistant schizophrenia successfully managed with brexpiprazole combination therapy. Asian J Psychiatr. 2022;72.

Article  PubMed  Google Scholar 

Brexpiprazole (Rexulti) for schizophrenia and depression. Med Lett Drugs Ther, 2015. 57(1475): p. 116-8. https://secure.medicalletter.org/TML-article-1475c.

Frampton JE. Brexpiprazole: A Review in Schizophrenia. Drugs. 2019;79(2):189–200.

Article  CAS  PubMed  Google Scholar 

Chitkara D, et al. Biodegradable injectable in situ depot-forming drug delivery systems. Macromol Biosci. 2006;6(12):977–90.

Article  CAS  PubMed  Google Scholar 

Fakhari A, Subramony JA. Engineered in-situ depot-forming hydrogels for intratumoral drug delivery. J Control Release. 2015;220(Pt A):465-475.

Schwendeman SP, et al. Injectable controlled release depots for large molecules. J Control Release. 2014;190:240–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang K, et al. Comparative study of electrospun crystal-based and composite-based drug nano depots. Mater Sci Eng C Mater Biol Appl. 2020;113.

Article  CAS  PubMed  Google Scholar 

Zhang P, et al. Comparison of three in-situ gels composed of different oil types. Int J Pharm. 2020;587.

Article  CAS  PubMed  Google Scholar 

de Freitas CSM, Soares AN. Efficacy of Leuprorelide acetate (Eligard(R)) in daily practice in Brazil: a retrospective study with depot formulations in patients with prostate cancer. Int Braz J Urol. 2020;46(3):383–9.

Article  PubMed  PubMed Central  Google Scholar 

Elstad NL, Fowers KD. OncoGel (ReGel/paclitaxel)–clinical applications for a novel paclitaxel delivery system. Adv Drug Deliv Rev. 2009;61(10):785–94.

Article  CAS  PubMed  Google Scholar 

Sartor O. Eligard: leuprolide acetate in a novel sustained-release delivery system. Urology. 2003;61(2 Suppl 1):25–31.

Article  PubMed  Google Scholar 

Srikhao N, et al. Multi-Responsive Optimization of Novel pH-Sensitive Hydrogel Beads Based on Basil Seed Mucilage, Alginate, and Magnetic Particles. Gels. 2022;8(5).

Su R, et al. Polydopamine/tannic acid/chitosan/poloxamer 407/188 thermosensitive hydrogel for antibacterial and wound healing. Carbohydr Polym. 2023;302.

Article  CAS  PubMed  Google Scholar 

Zhao Y, et al. A poloxamer/hyaluronic acid/chitosan-based thermosensitive hydrogel that releases dihydromyricetin to promote wound healing. Int J Biol Macromol. 2022;216:475–86.

Article  CAS  PubMed  Google Scholar 

Ahmed TA, et al. Development of biodegradable in situ implant and microparticle injectable formulations for sustained delivery of haloperidol. J Pharm Sci. 2012;101(10):3753–62.

Article  CAS  PubMed  Google Scholar 

Parent M, et al. PLGA in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release. J Control Release. 2013;172(1):292–304.

Article  CAS  PubMed  Google Scholar 

Kamali H, et al. In-vitro, ex-vivo, and in-vivo evaluation of buprenorphine HCl release from an in situ forming gel of PLGA-PEG-PLGA using Nmethyl2pyrrolidone as solvent. Mater Sci Eng C Mater Biol Appl. 2019;96:561–75.

Article  CAS  PubMed  Google Scholar 

Li Z, et al. An in vitro gel-based system for characterizing and predicting the long-term performance of PLGA in situ forming implants. Int J Pharm. 2021;609.

Article  CAS  PubMed  Google Scholar 

Biswas S, et al. Enhanced permeability and photoprotective potential of optimized p-coumaric acid-phospholipid complex loaded gel against UVA mediated oxidative stress. J Photochem Photobiol B. 2021;221.

Article  CAS  PubMed  Google Scholar 

Xu X, et al. Fabrication of oral nanovesicle in-situ gel based on Epigallocatechin gallate phospholipid complex: Application in dental anti-caries. Eur J Pharmacol. 2021;897.

Article  CAS  PubMed  Google Scholar 

Guse C, et al. Biocompatibility and erosion behavior of implants made of triglycerides and blends with cholesterol and phospholipids. Int J Pharm. 2006;314(2):153–60.

Article  CAS  PubMed  Google Scholar 

Xiang N, et al. An Injectable Gel Platform for the Prolonged Therapeutic Effect of Pitavastatin in the Management of Hyperlipidemia. J Pharm Sci. 2016;105(3):1148–55.

Article  CAS  PubMed  Google Scholar 

Puri A, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26(6):523–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bunjes H. Lipid nanoparticles for the delivery of poorly water-soluble drugs. J Pharm Pharmacol. 2010;62(11):1637–45.

Article  CAS  PubMed  Google Scholar 

Zhang T, et al. Injectable and biodegradable phospholipid-based phase separation gel for sustained delivery of insulin. Colloids Surf B Biointerfaces. 2019;176:194–201.

Article  CAS  PubMed  Google Scholar 

Du LR, et al. Development and evaluation of liquid embolic agents based on liquid crystalline material of glyceryl monooleate. Int J Pharm. 2014;471(1–2):285–96.

Article  CAS  PubMed  Google Scholar 

Ren T, et al. Lipid emulsions in parenteral nutrition: current applications and future developments. Expert Opin Drug Deliv. 2013;10(11):1533–49.

Article  CAS  PubMed  Google Scholar 

Han L, et al. An injectable, low-toxicity phospholipid-based phase separation gel that induces strong and persistent immune responses in mice. Biomaterials. 2016;105:185–94.

Article  CAS  PubMed  Google Scholar 

Li H, et al. An in situ-forming phospholipid-based phase transition gel prolongs the duration of local anesthesia for ropivacaine with minimal toxicity. Acta Biomater. 2017;58:136–45.

Article  CAS  PubMed  Google Scholar 

Luo J, et al. Efficient weapon for protracted warfare to malaria: A chondroitin sulfate derivates-containing injectable, ultra-long-lasting meshy-gel system. Carbohydr Polym. 2019;214:131–41.

Article  CAS  PubMed  Google Scholar 

Liang Y, et al. Adhesive Hemostatic Conducting Injectable Composite Hydrogels with Sustained Drug Release and Photothermal Antibacterial Activity to Promote Full-Thickness Skin Regeneration During Wound Healing. Small. 2019;15(12).

Article  PubMed  Google Scholar 

Remenar JF. Making the leap from daily oral dosing to long-acting injectables: lessons from the antipsychotics. Mol Pharm. 2014;11(6):1739–49.

Article  CAS  PubMed  Google Scholar 

Wang K, et al. Self-assembled L-alanine derivative organogel as in situ drug delivery implant: characterization, biodegradability, and biocompatibility. Drug Dev Ind Pharm. 2010;36(12):1511–21.

Article  CAS  PubMed  Google Scholar 

Yadav SK, Khan G, Mishra B. Advances in patents related to intrapocket technology for the management of periodontitis. Recent Pat Drug Deliv Formul. 2015;9(2):129–45.

Article  CAS 

留言 (0)

沒有登入
gif