Cellular Therapy for Children with Central Nervous System Tumors: Mining and Mapping the Correlative Data

Cooney T, et al. Contemporary survival endpoints: an International Diffuse Intrinsic Pontine Glioma Registry study. Neuro Oncol. 2017;19:1279–80.

Article  PubMed  PubMed Central  Google Scholar 

Ostrom QT, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol. 2022;24:v1–95.

Article  CAS  PubMed  Google Scholar 

Wang SS, Bandopadhayay P, Jenkins MR. Towards immunotherapy for pediatric brain tumors. Trends Immunol. 2019;40:748–61.

Article  CAS  PubMed  Google Scholar 

Lieberman NAP, Vitanza NA, Crane CA. Immunotherapy for brain tumors: understanding early successes and limitations. Exp Rev Neurother. 2018;18:251–9.

Article  CAS  Google Scholar 

Akhavan D, et al. CAR T cells for brain tumors: lessons learned and road ahead. Immunol Rev. 2019;290:60–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antonucci L, et al. CAR-T therapy for pediatric high-grade gliomas: peculiarities, current investigations and future strategies. Front Immunol. 2022;13:867154. https://doi.org/10.3389/fimmu.2022.867154

Patterson JD, Henson JC, Breese RO, Bielamowicz KJ, Rodriguez A. CAR T cell therapy for pediatric brain tumors. Front Oncol. 2020;10:1582. https://doi.org/10.3389/fonc.2020.01582.

O’Leary MC, et al. FDA approval summary: tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Clin Cancer Res. 2019;25:1142–6.

Article  PubMed  Google Scholar 

Gardner RA, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 2017;129:3322–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Rourke DM, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9:eaaa0984.

Article  PubMed  PubMed Central  Google Scholar 

Majzner RG, et al. CAR T cells targeting B7–H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res. 2019;25:2560–74. Extensive characterization of the potential for B7-H3 ACT targeting across solid and CNS tumors.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mount CW, et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3–K27M+ diffuse midline gliomas. Na Med. 2018;24:572–9. Preclinical assessment of the role for GD2 directed CAR T cells against DMG

Article  CAS  Google Scholar 

Ahmed N, et al. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res. 2010;16:474–85. https://doi.org/10.1158/1078-0432.CCR-09-1322Preclinical assessment of the role of HER2 directed CAR T cells against GBM.

Brown CE, et al. Optimization of IL13Rα2-targeted chimeric antigen receptor T cells for improved anti-tumor efficacy against glioblastoma. Mol Ther. 2018;26:31–44. Preclinical assessment of optimized IL13Ralpha2 directed CAR T cells against GBM

Article  CAS  PubMed  Google Scholar 

Nehama D, et al. B7-H3-redirected chimeric antigen receptor T cells target glioblastoma and neurospheres. EBioMedicine. 2019;47:33–43.

Article  PubMed  PubMed Central  Google Scholar 

Ravanpay AC, et al. EGFR806-CAR T cells selectively target a tumor-restricted EGFR epitope in glioblastoma. Oncotarget. 2019;10:7080–95.

Article  PubMed  PubMed Central  Google Scholar 

Haydar D, et al. Cell-surface antigen profiling of pediatric brain tumors: B7–H3 is consistently expressed and can be targeted via local or systemic CAR T-cell delivery. Neuro Oncol. 2021;23:999–1011.

Article  CAS  PubMed  Google Scholar 

Theruvath J, et al. Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nat Med. 2020;26:712–9. Preclinical work underscoring the role for intracranial ACT delivery against CNS tumors.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vitanza NA, et al. Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: an interim analysis. Nat Med. 2021;27:1544–52. The initial report of locoregional CAR T cells for children with CNS disease.

Article  CAS  PubMed  Google Scholar 

Majzner RG, et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature. 2022;603:934–41. The initial report of CAR T cell therapy for children with DIPG/DMG.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vitanza NA, et al. Intraventricular B7-H3 CAR T cells for diffuse intrinsic pontine glioma: preliminary first-in-human bioactivity and safety. Cancer Discov. 2023;13:114–31. https://doi.org/10.1158/2159-8290.CD-22-0750. The initial report of B7-H3 CAR T cells in children and pilot work of serial targeted mass spectrometry correlative studies from CSF and serum biospecimens.

Grant M, et al. EPCT-15. The remind trial: multi-antigen targeted T cells for pediatric CNS tumors. Neuro-Oncol. 2020;22:1522–8517. International Society of Pediatric Neuro-Oncology Conference, Japan.

Abdel-Azim H, et al. Alignment of practices for data harmonization across multi-center cell therapy trials: a report from the Consortium for Pediatric Cellular Immunotherapy. Cytotherapy. 2022;24:193–204. Important guidance of who data can be evaluated across clinical trials for chidlren receiving ACT

Article  CAS  PubMed  Google Scholar 

Ellingson BM, Wen PY, Cloughesy TF. Therapeutic response assessment of high-grade gliomas during early-phase drug development in the era of molecular and immunotherapies. Cancer J. 2021;27:395–403.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dromain C, Beigelman C, Pozzessere C, Duran R, Digklia A. Imaging of tumour response to immunotherapy. Eur Radiol Exp. 2020;4:2.

Article  PubMed  PubMed Central  Google Scholar 

van den Bent MJ, Vogelbaum MA, Wen PY, Macdonald DR, Chang SM. End point assessment in gliomas: novel treatments limit usefulness of classical Macdonald’s Criteria. J Clin Oncol. 2009;27:2905–8.

Article  PubMed  PubMed Central  Google Scholar 

Chang SM, Wen PY, Vogelbaum MA, Macdonald DR, van den Bent MJ. Response Assessment in Neuro-Oncology (RANO): more than imaging criteria for malignant glioma. Neurooncol Pract. 2015;2:205–9.

PubMed  PubMed Central  Google Scholar 

Ellingson BM, Wen PY, Cloughesy TF. Modified criteria for radiographic response assessment in glioblastoma clinical trials. Neurotherapeutics. 2017;14:307–20.

Article  PubMed  PubMed Central  Google Scholar 

Urban H, et al. Immune checkpoint inhibitor-induced cerebral pseudoprogression: patterns and categorization. Front Immunol. 2021;12:798811.

Article  CAS  PubMed  Google Scholar 

Okada H, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015;16:e534–42. The initial recommendations from the RANO working group describing iRANO criteria.

Article  PubMed  PubMed Central  Google Scholar 

Antonios JP, et al. Detection of immune responses after immunotherapy in glioblastoma using PET and MRI. Proc Natl Acad Sci U S A. 2017;114:10220–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keu KV, et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med. 2017;9. https://doi.org/10.1126/scitranslmed.aag2196

Yeom KW, et al. Prognostic role for diffusion-weighted imaging of pediatric optic pathway glioma. J Neurooncol. 2013;113:479–83.

Article  CAS  PubMed  Google Scholar 

Zhang M, et al. Radiomic signatures of posterior fossa ependymoma: molecular subgroups and risk profiles. Neuro Oncol. 2022;24:986–94.

Article  PubMed  Google Scholar 

Zhang M, et al. Radiomic phenotypes distinguish atypical teratoid/rhabdoid tumors from medulloblastoma. Am J Neuroradiol. 2021;42:1702–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tam LT, et al. MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study. Neurooncol Adv. 2021;3:vdab042.

PubMed  PubMed Central  Google Scholar 

Zhang M, et al. Machine assist for pediatric posterior fossa tumor diagnosis: a multinational study. Neurosurgery. 2021;89:892–900.

Article  PubMed  PubMed Central  Google Scholar 

Zhang M, et al. MRI radiogenomics of pediatric medulloblastoma: a multicenter study. Radiology. 2022;304:406–16.

Article  PubMed  Google Scholar 

Tang X, et al. Bioactivity and safety of B7-H3-targeted chimeric antigen receptor T cells against anaplastic meningioma. Clin Transl Immunology. 2020;9:e1137. https://doi.org/10.1002/cti2.1137.

Ahmed N, et al. HER2-specific chimeric antigen receptor–modified virus-specific T cells for progressive glioblastoma. JAMA Oncol. 2017;3:1094.

Article  PubMed  PubMed Central  Google Scholar 

Brown CE, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375:2561–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang P, Whiteaker JR, Paulovich AG. The evolving role of mass spectrometry in cancer biomarker discovery. Cancer Biol Ther. 2009;8:1083–94.

Article  CAS  PubMed  Google Scholar 

Petralia F, et al. Integrated proteogenomic characterization across major histological types of pediatric brain cancer. Cell. 2020;183:1962-1985.e1931.

留言 (0)

沒有登入
gif