Astaxanthin ameliorates spinal cord edema and astrocyte activation via suppression of HMGB1/TLR4/NF-κB signaling pathway in a rat model of spinal cord injury

Agalave NM, Svensson CI (2014) Extracellular high-mobility group box 1 protein (HMGB1) as a mediator of persistent pain. Mol Med 20:569–578

Article  Google Scholar 

Anwar MA, Al Shehabi TS, Eid AH (2016) Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci 10:98

Article  PubMed  PubMed Central  Google Scholar 

Cabrera-Aldana EE, Ruelas F, Aranda C, Rincon-Heredia R, Martínez-Cruz A, Reyes-Sánchez A, Guizar-Sahagún G, Tovar-y-Romo LB (2017) Methylprednisolone administration following spinal cord injury reduces aquaporin 4 expression and exacerbates edema. Mediators Inflamm 2017: 4792932

Cho N, Hachem LD, Fehlings MG (2017) Spinal cord edema after spinal cord injury: from pathogenesis to management. Brain Edema. Elsevier, pp 261–275

Fakhri S, Abbaszadeh F, Dargahi L, Jorjani M (2018a) Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol Res 136:1–20

Article  CAS  PubMed  Google Scholar 

Fakhri S, Dargahi L, Abbaszadeh F, Jorjani M (2018b) Astaxanthin attenuates neuroinflammation contributed to the neuropathic pain and motor dysfunction following compression spinal cord injury. Brain Res Bull 143:217–224

Article  CAS  PubMed  Google Scholar 

Fakhri S, Dargahi L, Abbaszadeh F, Jorjani M (2019) Effects of astaxanthin on sensory-motor function in a compression model of spinal cord injury: involvement of ERK and AKT signalling pathway. Eur J Pain 23:750–764

Article  CAS  PubMed  Google Scholar 

Figley SA, Khosravi R, Legasto JM, Tseng Y-F, Fehlings MG (2014) Characterization of vascular disruption and blood–spinal cord barrier permeability following traumatic spinal cord injury. J Neurotrauma 31:541–552

Article  PubMed  PubMed Central  Google Scholar 

Huang Y, Li S-n, Zhou X-y, Zhang L-x, Chen G-x, Wang T-h, Xia Q-j, Liang N, Zhang X (2019) The dual role of AQP4 in cytotoxic and vasogenic edema following spinal cord contusion and its possible association with energy metabolism via COX5A. Front Neurosci 13:584

Article  PubMed  PubMed Central  Google Scholar 

Huang S, Jiang H, Hu H, Lv D (2021) Targeting AQP4 localization as a novel therapeutic target in CNS edema. Acta Biochim Biophys Sin 53:269–272

Article  CAS  PubMed  Google Scholar 

Ieong C, Sun H, Wang Q, Ma J (2018) Glycyrrhizin suppresses the expressions of HMGB1 and ameliorates inflammative effect after acute subarachnoid hemorrhage in rat model. J Clin Neurosci 47:278–284

Article  CAS  PubMed  Google Scholar 

Illarionova N, Gunnarson E, Li Y, Brismar H, Bondar A, Zelenin S, Aperia A (2010) Functional and molecular interactions between aquaporins and Na, K-ATPase. Neuroscience 168:915–925

Article  CAS  PubMed  Google Scholar 

Jin L-Y, Li J, Wang K-F, Xia W-W, Zhu Z-Q, Wang C-R, Li X-F, Liu H-Y (2021) Blood–spinal cord barrier in spinal cord injury: a review. J Neurotrauma 38:1203–1224

Article  PubMed  Google Scholar 

Kitchen P, Day RE, Taylor LH, Salman MM, Bill RM, Conner MT, Conner AC (2015) Identification and molecular mechanisms of the rapid tonicity-induced relocalization of the aquaporin 4 channel. J Biol Chem 290:16873–16881

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar H, Ropper AE, Lee S-H, Han I (2017) Propitious therapeutic modulators to prevent blood-spinal cord barrier disruption in spinal cord injury. Mol Neurobiol 54:3578–3590

Article  CAS  PubMed  Google Scholar 

Laird MD, Shields JS, Sukumari-Ramesh S, Kimbler DE, Fessler RD, Shakir B, Youssef P, Yanasak N, Vender JR, Dhandapani KM (2014) High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4. Glia 62:26–38

Article  PubMed  Google Scholar 

Lee JY, Kim HS, Choi HY, Oh TH, Yune TY (2012) Fluoxetine inhibits matrix metalloprotease activation and prevents disruption of blood–spinal cord barrier after spinal cord injury. Brain 135:2375–2389

Article  PubMed  Google Scholar 

Liu X, Wang Y, Yang J, Liu Y, Zhou D, Hou M, Xiang L (2015) Anti-edema effect of melatonin on spinal cord injury in rats. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 159:220–226

Article  PubMed  Google Scholar 

Liu S, Mao J, Wang T, Fu X (2017) Downregulation of aquaporin-4 protects brain against hypoxia ischemia via anti-inflammatory mechanism. Mol Neurobiol 54:6426–6435

Article  CAS  PubMed  Google Scholar 

Masoudi A, Dargahi L, Abbaszadeh F, Pourgholami MH, Asgari A, Manoochehri M, Jorjani M (2017) Neuroprotective effects of astaxanthin in a rat model of spinal cord injury. Behav Brain Res 329:104–110

Article  CAS  PubMed  Google Scholar 

Nishibori M, Wang D, Ousaka D, Wake H (2020) High mobility group box-1 and blood–brain barrier disruption. Cells 9:2650

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noble LJ, Donovan F, Igarashi T, Goussev S, Werb Z (2002) Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci Res 22:7526–7535

CAS  Google Scholar 

Ohnishi M, Monda A, Takemoto R, Fujimoto Y, Sugitani M, Iwamura T, Hiroyasu T, Inoue A (2014) High-mobility group box 1 up-regulates aquaporin 4 expression via microglia–astrocyte interaction. Neurochem Int 75:32–38

Article  CAS  PubMed  Google Scholar 

Oklinski MK, Skowronski MT, Skowronska A, Rützler M, Nørgaard K, Nieland JD, Kwon T-H, Nielsen S (2016) Aquaporins in the spinal cord. Int J Mol Sci 17:2050

Article  PubMed  PubMed Central  Google Scholar 

Oshio K, Binder D, Yang B, Schecter S, Verkman A, Manley G (2004) Expression of aquaporin water channels in mouse spinal cord. Neuroscience 127:685–693

Article  CAS  PubMed  Google Scholar 

Pan YI, Guo Y, Ma Y, Wang L, Sy Z, Mm L, Gc H (2019) Aquaporin-4 expression dynamically varies after acute spinal cord injury-induced disruption of blood spinal cord barrier in rats. Neuropathology 39:181–186

CAS  PubMed  Google Scholar 

Pan Q-L, Lin F-X, Liu N, Chen R-C (2022) The role of aquaporin 4 (AQP4) in spinal cord injury. Biomed Pharmacother 145:112384

Article  CAS  PubMed  Google Scholar 

Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14:265–277

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park CS, Lee JY, Choi HY, Lee K, Heo Y, Ju BG, Choo H-YP, Yune TY (2020) Gallic acid attenuates blood-spinal cord barrier disruption by inhibiting Jmjd3 expression and activation after spinal cord injury. Neurobiol Dis 145:105077

Article  CAS  PubMed  Google Scholar 

Poon PC, Gupta D, Shoichet MS, Tator CH (2007) Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates. Spine 32:2853–2859

Article  PubMed  Google Scholar 

Saini V, Lutz D, Kataria H, Kaur G, Schachner M, Loers G (2016) The polysialic acid mimetics 5-nonyloxytryptamine and vinorelbine facilitate nervous system repair. Sci Rep 6:1–12

Article  Google Scholar 

Sandner B, Pillai DR, Heidemann RM, Schuierer G, Mueller MF, Bogdahn U, Schlachetzki F, Weidner N (2009) In vivo high-resolution imaging of the injured rat spinal cord using a 3.0 T clinical MR scanner. J Magn Reson Imaging Magn Reson Med 29:725–730

Article  Google Scholar 

Sharma HS, Badgaiyan RD, Alm P, Mohanty S, Wiklund L (2005) Neuroprotective effects of nitric oxide synthase inhibitors in spinal cord injury-induced pathophysiology and motor functions: an experimental study in the rat. Ann N Y Acad Sci 1053:422–434

Article  CAS  PubMed  Google Scholar 

Sun L, Li M, Ma X, Feng H, Song J, Lv C, He Y (2017) Inhibition of HMGB1 reduces rat spinal cord astrocytic swelling and AQP4 expression after oxygen-glucose deprivation and reoxygenation via TLR4 and NF-κB signaling in an IL-6-dependent manner. J Neuroinflammation 14:1–18

Article  Google Scholar 

Sun L, Li M, Ma X, Zhang L, Song J, Lv C, He Y (2019) Inhibiting high mobility group box-1 reduces early spinal cord edema and attenuates astrocyte activation and aquaporin-4 expression after spinal cord injury in rats. J Neurotrauma 36:421–435

Article  PubMed  Google Scholar 

Teng Z, Guo Z, Zhong J, Cheng C, Huang Z, Wu Y, Tang S, Luo C, Peng X, Wu H (2017) ApoE influences the blood-brain barrier through the NF-κB/MMP-9 pathway after traumatic brain injury. Sci Rep 7:1–8

Article  Google Scholar 

Verkman A, Binder DK, Bloch O, Auguste K, Papadopoulos MC (2006) Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta Biomembr 1758:1085–1093

Article  CAS  Google Scholar 

Wagner FC, Stewart WB (1981) Effect of trauma dose on spinal cord edema. J Neurosurg 54:802–806

Article  PubMed  Google Scholar 

Wang Z-R, Li Y-X, Lei H-Y, Yang D-Q, Wang L-Q, Luo M-Y (2016) Regulating effect of activated NF-κB on edema induced by traumatic brain injury of rats. Asian Pac J Trop Med 9:274–277

Article  CAS  PubMed  Google Scholar 

Zhang J, Takahashi HK, Liu K, Wake H, Liu R, Maruo T, Date I, Yoshino T, Ohtsuka A, Mori S (2011) Anti-high mobility group box-1 monoclonal antibody protects the blood–brain barrier from ischemia-induced disruption in rats. Stroke 42:1420–1428

Article  CAS  PubMed 

留言 (0)

沒有登入
gif