Exploring the mechanism by which quercetin re-sensitizes breast cancer to paclitaxel: network pharmacology, molecular docking, and experimental verification

Burley SK, Bhikadiya C, Bi C et al (2021) RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 49:D437–D451. https://doi.org/10.1093/nar/gkaa1038

Article  CAS  PubMed  Google Scholar 

Chen Z, Huang C, Ma T et al (2018) Reversal effect of quercetin on multidrug resistance via FZD7/β-catenin pathway in hepatocellular carcinoma cells. Phytomedicine 43:37–45. https://doi.org/10.1016/j.phymed.2018.03.040

Article  CAS  PubMed  Google Scholar 

Chen Y, Li X, Xu J et al (2022) Knockdown of nuclear receptor binding SET domain-containing protein 1 (NSD1) inhibits proliferation and facilitates apoptosis in paclitaxel-resistant breast cancer cells via inactivating the Wnt/β-catenin signaling pathway. Bioengineered 13:3526–3536. https://doi.org/10.1080/21655979.2021.2018973

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui Y, Li Q, Li H et al (2017) Asparaginyl endopeptidase improves the resistance of microtubule-targeting drugs in gastric cancer through IQGAGAP1 modulating the EGFR/JNK/ERERK signaling pathway. Onco Targets Ther 10:627–643. https://doi.org/10.2147/OTT.S125579

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui X, Sun Y, Shen M et al (2018) Enhanced chemotherapeutic efficacy of paclitaxel nanoparticles co-delivered with MicroRNA-7 by Inhibiting Paclitaxel-Induced EGFR/ERK pathway Activation for Ovarian Cancer Therapy. ACS Appl Mater Interfaces 10:7821–7831. https://doi.org/10.1021/acsami.7b19183

Article  CAS  PubMed  Google Scholar 

Daina A, Michielin O, Zoete V (2019) SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 47:W357–W3664. https://doi.org/10.1093/nar/gkz382

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gong D, Zhang J, Chen Y et al (2019) The m6A-suppressed P2RX6 activation promotes renal cancer cells migration and invasion through ATP-induced Ca2+ influx modulating ERK1/2 phosphorylation and MMP9 signaling pathway. J Exp Clin Cancer Res 38:1–16. https://doi.org/10.1186/s13046-019-1223-y

Article  CAS  Google Scholar 

Insua‐Rodríguez J, Pein M, Hongu T et al (2018) Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis. EMBO Mol Med 10:1–21. https://doi.org/10.15252/emmm.201809003

Jiang L, Wang P, Sun YJ, Wu YJ (2019) Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway. J Exp Clin Cancer Res 38:1–5. https://doi.org/10.1186/s13046-019-1251-7

Article  CAS  Google Scholar 

Keiser MJ, Roth BL, Armbruster BN et al (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197–206. https://doi.org/10.1038/nbt1284

Article  CAS  PubMed  Google Scholar 

Kim S, Chen J, Cheng T et al (2021) PubChem in 2021 : new data content and improved web interfaces. 49:1388–1395. https://doi.org/10.1093/nar/gkaa971

Kıyga E, Şengelen A, Adıgüzel Z, Önay Uçar E (2020) Investigation of the role of quercetin as a heat shock protein inhibitor on apoptosis in human breast cancer cells. Mol Biol Rep 47:4957–4967. https://doi.org/10.1007/s11033-020-05641-x

Article  CAS  PubMed  Google Scholar 

Li S, Yuan S, Zhao Q et al (2018) Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed Pharmacother 100:441–447. https://doi.org/10.1016/j.biopha.2018.02.055

Article  CAS  PubMed  Google Scholar 

Li S, Wu C, Fan C et al (2021) Tanshinone II A improves the chemosensitivity of breast cancer cells to doxorubicin by inhibiting β-catenin nuclear translocation. J Biochem Mol Toxicol 35:1–10. https://doi.org/10.1002/jbt.22620

Article  CAS  PubMed  Google Scholar 

Liu P, Yin Yl, Wang T et al (2019) Ligand-induced activation of ERK1/2 signaling by constitutively active Gs-coupled 5-HT receptors. Acta Pharmacol Sin 40:1157–1167. https://doi.org/10.1038/s41401-018-0204-6

Lu X, Yang F, Chen D et al (2020) Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/AKT signaling pathways. Int J Biol Sci 16:1121–1134. https://doi.org/10.7150/ijbs.41686

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo Tt, Lu Y, Yan Sk et al (2020) Network pharmacology in research of Chinese medicine formula: methodology, application and prospective. Chin J Integr Med 26:72–80.https://doi.org/10.1007/s11655-019-3064-0

Moreno-Aspitia A, Perez EA (2009) Treatment options for breast cancer resistant to anthracycline and taxane. Mayo Clin. Proc. 84:533–545. https://doi.org/10.4065/84.6.533

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morris GM, Ruth H, Lindstrom W et al (2009) Software news and updates AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oikawa M (2020) The history, present situation, and future directions of neoadjuvant chemotherapy for HER2-negative breast cancer. Chinese Clin Oncol 9:1–9. https://doi.org/10.21037/cco-20-12

Piñero J, Saüch J, Sanz F, Furlong LI (2021) The DisGeNET cytoscape app: exploring and visualizing disease genomics data. Comput Struct Biotechnol J 19:2960–2967. https://doi.org/10.1016/j.csbj.2021.05.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reinhold WC, Sunshine M, Liu H et al (2012) Cell Miner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res 72:3499–3511. https://doi.org/10.1158/0008-5472.CAN-12-1370

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roshanazadeh M, Rezaei HB, Rashidi M (2021) Quercetin synergistically potentiates the anti-metastatic effect of 5-fluorouracil on the MDA-MB-231 breast cancer cell line. Iran J Basic Med Sci 24:928–934. https://doi.org/10.22038/ijbms.2021.56559.12629

Samaan TMA, Samec M, Liskova A et al (2019) Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules 9:1–22. https://doi.org/10.3390/biom9120789

Article  CAS  Google Scholar 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (1971) Cytoscape: a software environment for integrated models. Genome Res 13:426. https://doi.org/10.1101/gr.1239303.metabolite

Article  Google Scholar 

Sherman BT, Hao M, Qiu J et al (2022) DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 50:W216–W221. https://doi.org/10.1093/nar/gkac194

Article  PubMed  PubMed Central  Google Scholar 

Stelzer G, Rosen N, Plaschkes I et al (2016) The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinforma 2016:1.30.1–1.30.33. https://doi.org/10.1002/cpbi.5

Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

Article  PubMed  Google Scholar 

Szklarczyk D, Santos A, Von Mering C et al (2016) STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res 44:D380–D384. https://doi.org/10.1093/nar/gkv1277

Article  CAS  PubMed  Google Scholar 

Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613. https://doi.org/10.1093/nar/gky1131

Article  CAS  PubMed  Google Scholar 

Takano M, Otani Y, Tanda M et al (2009) Paclitaxel-resistance conferred by altered expression of efflux and influx transporters for paclitaxel in the human hepatoma cell line, HepG2. Drug Metab Pharmacokinet 24:418–427. https://doi.org/10.2133/dmpk.24.418

Article  CAS  PubMed  Google Scholar 

Tsai PC, Hsieh CY, Chiu CC et al (2012) Cardiotoxin III suppresses MDA-MB-231 cell metastasis through the inhibition of EGF/EGFR-mediated signaling pathway. Toxicon 60:734–743. https://doi.org/10.1016/j.toxicon.2012.05.019

Article  CAS  PubMed  Google Scholar 

Wang L, Zhou Y, Jiang L et al (2021a) CircWAC induces chemotherapeutic resistance in triple-negative breast cancer by targeting miR-142, upregulating WWP1 and activating the PI3K/AKT pathway. Mol Cancer 20:1–15. https://doi.org/10.1186/s12943-021-01332-8

Article  CAS  Google Scholar 

Wang X, Wang ZY, Zheng JH, Li S (2021b) TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches. Chin J Nat Med 19:1–11. https://doi.org/10.1016/S1875-5364(21)60001-8

Article  PubMed  Google Scholar 

Wang ZX, Ma J, Li XY et al (2021c) Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and reactive oxygen species-dependent ferroptosis. Br J Pharmacol 178:1133–1148. https://doi.org/10.1111/bph.15350

Article  CAS  PubMed  Google Scholar 

Wang R, Yang L, Li S et al (2018) Quercetin inhibits breast cancer stem cells via downregulation of aldehyde dehydrogenase 1A1 (ALDH1A1), chemokine receptor type 4 (CXCR4), mucin 1 (MUC1), and epithelial cell adhesion molecule (EpCAM). Med Sci Monit 24:412–420. https://doi.org/10.12659/MSM.908022

Wang N, Yang B, Muhetaer G et al (2019) XIAOPI formula promotes breast cancer chemosensitivity via inhibiting CXCL1/HMGB1-mediated autophagy. Biomed Pharmacother 120:109519. https://doi.org/10.1016/j.biopha.2019.109519

Wu Y, Zhang F, Yang K et al (2019) SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res 47:D1110–D1117. https://doi.org/10.1093/nar/gky1021

Article  PubMed  Google Scholar 

Xiao X, He Z, Cao W et al (2016) Oridonin inhibits gefitinib-resistant lung cancer cells by suppressing EGFR/ERK/MMP-12 and CIP2A/Akt signaling pathways. Int J Oncol 48:2608–2618. https://doi.org/10.3892/ijo.2016.3488

Article  CAS  PubMed  Google Scholar 

Yang YH, Mao JW, Tan XL (2020) Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin J Nat Med 18:10–17. https://doi.org/10.1016/S1875-5364(20)60032-2

Article  CAS  Google Scholar 

Yao N, Wang CR, Liu MQ et al (2020) Discovery of a novel EGFR ligand DPBA that degrades EGFR and suppresses EGFR-positive NSCLC growth. Signal Transduct Target Ther 5. https://doi.org/10.1038/s41392-020-00251-2

Zhang X, Niu W, Mu M et al (2020) Long non-coding RNA LPP-AS2 promotes glioma tumorigenesis via miR-7-5p/EGFR/PI3K/AKT/c-MYC feedback loop. J Exp Clin Cancer Res 39:1–20. https://doi.org/10.1186/s13046-020-01695-8

Article  CAS  Google Scholar 

Zhang M, Yang J, Zhao X et al (2021) Network pharmacology and molecular docking study on the active ingredients of qidengmingmu capsule for the treatment of diabetic retinopathy. Sci Rep 11:1–11. https://doi.org/10.1038/s41598-021-86914-8

Article  CAS 

留言 (0)

沒有登入
gif