Involvement of oxidative stress and pro-inflammatory cytokines in copper sulfate-induced depression-like disorders and abnormal neuronal morphology in mice

Adebesin A, Adeoluwa OA, Eduviere AT, Umukoro S (2017) Methyl jasmonate attenuated lipopolysaccharide-induced depressive-like behaviour in mice. J Psychiatr Res 94:29–35. https://doi.org/10.1016/j.jpsychires.2017.06.007

Article  PubMed  Google Scholar 

Bakunina N, Pariante CM, Zunszain PA (2015) Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunol 144:365e373. https://doi.org/10.1111/imm.12443

Article  CAS  Google Scholar 

Bandmann O, Weiss KH, Kaler SG (2015) Wilson’s disease and other neurological copper disorders. Lancet Neurol 14:103–113. https://doi.org/10.1016/S1474-4422(14)70190-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cathomas F, Hartmann MN, Seifritz E, Pryce CR, Kaiser S (2015) The translational study of apathy-an ecological approach. Front Behav Neurosci 9:241. https://doi.org/10.3389/fnbeh.2015.00241

Article  PubMed  PubMed Central  Google Scholar 

Coelho FC, Cerchiaro G, Araújo SES, Daher JPL, Cardoso SA, Coelho GF, Guimarães AG (2022) Is there a connection between the metabolism of copper, sulfur, and molybdenum in Alzheimer’s Disease? New insights on disease etiology. Int J Mol Sci. 23:7935. https://doi.org/10.3390/ijms23147935

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crayton JW, Walsh WJ (2007) Elevated serum Cu levels in women with a history of post-partum depression. J Trace Elem Med Biol 21:17–21. https://doi.org/10.1016/j.jtemb.2006.10.001

Article  CAS  PubMed  Google Scholar 

Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46e54. https://doi.org/10.1038/nrn2297

Article  CAS  Google Scholar 

d’Audiffret AC, Frisbee SJ, Stapleton PA, Goodwill AG, Isingrini E, Frisbee JC (2010) Depressive behavior and vascular dysfunction: a link between clinical depression and vascular disease?. Appl Physiol 108:1041–1051. https://doi.org/10.1152/japplphysiol.01440.2009

Article  CAS  Google Scholar 

Desai V, Kaler SG (2008) Role of copper in human neurological disorders. Am J Clin Nutr 88:855S-858S. https://doi.org/10.1093/ajcn/88.3.855S

Article  CAS  PubMed  Google Scholar 

Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6

Article  CAS  PubMed  Google Scholar 

Emokpae O, Ben-Azu B, Ajayi AM, Umukoro S (2020) D-Ribose-L-cysteine attenuates lipopolysaccharide-induced memory deficits through inhibition of oxidative stress, release of proinflammatory cytokines, and nuclear factor-kappa B expression in mice. Naunyn-Schmied Arch Pharm 393:909–925. https://doi.org/10.1007/s00210-019-01805-0

Article  CAS  Google Scholar 

Etebary S, Nikseresht S, Sadeghipour HR, Zarrindast MR (2010) Postpartum depression and role of serum trace elements. Iran J Psychiat 5:40–46

Google Scholar 

Girgis F, Pace J, Sweet J, Miller JP (2016) Hippocampal neurophysiologic changes after mild traumatic brain injury and potential neuromodulation treatment approaches. Front Syst Neurosci 2016| https://doi.org/10.3389/fnsys.2016.00008

Goth LA (1990) Simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143–151. https://doi.org/10.1016/0009-8981(91)90067-m

Article  Google Scholar 

Green LC, Tannenbaum SR, Goldman P (1981) Nitrate synthesis in the germ free and conventional rat. Science 212:56–58. https://doi.org/10.1126/science.6451927

Article  CAS  PubMed  Google Scholar 

Grubman A, White AR (2014) Copper as a key regulator of cell signalling pathways. Expert Rev Mol Med 22: https://doi.org/10.1017/erm.2014.11

Habig WH, Jakoby WB (1981) Assay for differentiation of glutathione-S-transferases. Meth Enzymol 77:398–405. https://doi.org/10.1016/s0076-6879(81)77053-8

Article  CAS  Google Scholar 

Isibor H, Ajayi AM, Ben-Azu B, Omeiza NA, Ademola AP, Umukoro S (2022) D-Ribose-L-Cysteine reduces oxidative stress and inflammatory cytokines to mitigate liver damage, and memory decline induced by copper sulfate in mice. J Trace Elements in Med Biol 73:12700. https://doi.org/10.1016/j.jtemb.2022.127001

Article  CAS  Google Scholar 

Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacol 11:151–169. https://doi.org/10.1159/000136485

Article  CAS  Google Scholar 

Kaczmarek AT, Strampraad MJF, Hagedoorn PL, Schwarz G (2019) Reciprocal regulation of sulfite oxidation and nitrite reduction by mitochondrial sulfite oxidase. Nitric Oxide 89:22–31. https://doi.org/10.1016/j.niox.2019.04.004

Article  CAS  PubMed  Google Scholar 

Kalita J, Kumar V, Misra UK, Bora HK (2020) Movement disorder in copper toxicity rat model: Role of inflammation and apoptosis in the corpus striatum. Neurotox Res 37:904–912. https://doi.org/10.1007/s12640-019-00140-9

Article  CAS  PubMed  Google Scholar 

Kułak-Bejda A, Waszkiewicz N, Galińska-Skok B, Zajkowska A, Kułakowska A, Kochanowicz J (2020) Primarily depression manifestation of Wilson’s disease-case report. Clin Neurol Neurosurg 190:105651. https://doi.org/10.1016/j.clineuro.2019.105651

Article  PubMed  Google Scholar 

Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36:764–785. https://doi.org/10.1016/j.neubiorev.2011.12.005

Article  CAS  PubMed  Google Scholar 

Liao X, Lai S, Zhong S, Wang Y, Zhang Y, Shen S, Huang H, Chen G, Chen F, Jia Y (2021) Interaction of serum copper and neurometabolites on executive dysfunction in unmedicated patients with major depressive disorder. Front Psychiat 12:564375. https://doi.org/10.3389/fpsyt.2021.564375

Article  Google Scholar 

Litwin T, Dusek P, Szafrański T, Dzieżyc K, Członkowska A, Rybakowski JK (2018) Psychiatric manifestations in Wilson’s disease: possibilities and difficulties for treatment. Ther Adv Psychopharmacol 8:199–211. https://doi.org/10.1177/2045125318759461

Article  PubMed  PubMed Central  Google Scholar 

Liu L, Zhang O, Cai Y, Sun D, He X, Wang L, Yu D, Li X, Xiong X, Xu H, Yang O, Fan X (2016) Resveratrol counteracts lipopolysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis. Oncotarget 7:56045–56059. https://doi.org/10.18632/oncotarget.11178

Article  PubMed  PubMed Central  Google Scholar 

Liu X, Zhong S, Li Z, Chen J, Wang Y, Lai S, Miao H, Jia Y (2020) Serum copper and zinc levels correlate with biochemical metabolite ratios in the prefrontal cortex and lentiform nucleus of patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiat 99:109828. https://doi.org/10.1016/j.pnpbp.2019.109828

Article  CAS  Google Scholar 

Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

Article  CAS  PubMed  Google Scholar 

Maes M, Vandoolaeghe E, Neels H, Demedts P, Wauters A, Meltzer HY, Altamura C, Desnyder R (1997) Lower serum zinc in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in that illness. Biol Psychiat 42:349–358. https://doi.org/10.1016/S0006-3223(96)00365-4

Article  CAS  PubMed  Google Scholar 

Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (ONS) pathways in major depression and their possible contribution to the (neuro) degenerative processes in that illness. Prog Neuro-Psychopharmacol Biol Psychiatry 35:676–692. https://doi.org/10.1016/j.pnpbp.2010.05.004

Article  CAS  Google Scholar 

Manser WW, Khan MA, Hasan KZ (1989) Trace element studies on Karachi population. Part IV: blood copper, zinc, magnesium and lead levels in psychiatric patients with depression, mental retardation and seizure disorders. J Pak Med Assoc 39:269–274

CAS  PubMed  Google Scholar 

Miller AM, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiat 65:732–741. https://doi.org/10.1016/j.biopsych.2008.11.029

Article  CAS  PubMed  Google Scholar 

Misra P, Fridovich I (1972) The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175. https://doi.org/10.1016/S0021-9258(19)45228-9

Article  CAS  PubMed  Google Scholar 

Młyniec K, Gaweł M, Doboszewska U, Starowicz G, Pytka K, Davies CL, Budziszewska B (2015) Essential elements in depression and anxiety. Part II Pharmacol Rep 67:187–194. https://doi.org/10.1016/j.pharep.2014.09.009

Article  CAS  PubMed  Google Scholar 

Narang RL, Gupta KR, Narang AP, Singh R (1991) Levels of copper and zinc in depression. Indian J Physiol Pharmacol 35:272–274

CAS  PubMed  Google Scholar 

O’Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatr 14:511–522. https://doi.org/10.1038/sj.mp.4002148

Article  CAS  Google Scholar 

Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738

Article  CAS  PubMed  Google Scholar 

Planchez B, Surget A, Belzung C (2019) Animal models of major depression: drawbacks and challenges. J Neural Transmission 126:1383–1408. https://doi.org/10.1007/s00702-019-02084-y

Article  CAS  Google Scholar 

Porsolt RD, Anton G, Deniel M (1978) Behavioral despair in rats: a new animal model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391. https://doi.org/10.1016/0014-2999(78)90118-8

Article  CAS  PubMed 

留言 (0)

沒有登入
gif