Pharmacological evidence for glutamatergic pathway involvement in the antidepressant-like effects of 2-phenyl-3-(phenylselanyl)benzofuran in male Swiss mice

Adell A (2020) Brain NMDA Receptors in Schizophrenia and Depression. Biomolecules 10(6)947. https://doi.org/10.3390/biom10060947

Aleksandrova LR, Phillips AG, Wang YT (2017) Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism. J Psychiatry Neurosci 42(4):222–229. https://doi.org/10.1503/jpn.160175

Article  PubMed  PubMed Central  Google Scholar 

Baez MV, Cercato MC, Jerusalinsky DA (2018) NMDA Receptor Subunits Change after Synaptic Plasticity Induction and Learning and Memory Acquisition. Neural Plast 2018:5093048. https://doi.org/10.1155/2018/5093048

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bahji A, Vazquez GH, Zarate CA Jr (2021) Erratum to “Comparative efficacy of racemic ketamine and esketamine for depression: a systematic review and meta-analysis” [Journal of Affective Disorders 278C (2021) 542–555]. J Affect Disord 281:1001. https://doi.org/10.1016/j.jad.2020.11.103

Article  PubMed  Google Scholar 

Blödorn A, Duarte L, Roehrs J, Silva M, Santos Neto J, Alves D (2022) Trichloroisocyanuric Acid (TCCA): a Suitable Reagent for the Synthesis of Selanyl-benzo[b]chalcogenophenes. Eur J Org Chem 2022(40):21–26; e202200775. https://doi.org/10.1002/ejoc.202200775

Bozymski KM, Crouse EL, Titus-Lay EN, Ott CA, Nofziger JL, Kirkwood CK (2020) Esketamine: a Novel Option for Treatment-Resistant Depression. Ann Pharmacother 54(6):567–576. https://doi.org/10.1177/1060028019892644

Calabrese F, Guidotti G, Molteni R, Racagni G, Mancini M, Riva MA (2012) Stress-induced changes of hippocampal NMDA receptors: modulation by duloxetine treatment. PLoS One 7(5):e37916. https://doi.org/10.1371/journal.pone.0037916

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corcoran M, Hawkins EL, O’Hora D, Whalley HC, Hall J, Lawrie SM, Dauvermann MR (2020) Are working memory and glutamate concentrations involved in early-life stress and severity of psychosis? Brain Behav 10(6):e01616. https://doi.org/10.1002/brb3.1616

Article  PubMed  PubMed Central  Google Scholar 

Cui W, Ning Y, Hong W, Wang J, Liu Z, Li MD (2019) Crosstalk Between Inflammation and Glutamate System in Depression: Signaling Pathway and Molecular Biomarkers for Ketamine’s Antidepressant Effect. Mol Neurobiol 56(5):3484–3500. https://doi.org/10.1007/s12035-018-1306-3

Article  CAS  PubMed  Google Scholar 

Cunha MP, Pazini FL, Ludka FK, Rosa JM, Oliveira A, Budni J, Ramos-Hryb AB, Lieberknecht V, Bettio LE, Martin-de-Saavedra MD, Lopez MG, Tasca CI, Rodrigues AL (2015) The modulation of NMDA receptors and L-arginine/nitric oxide pathway is implicated in the anti-immobility effect of creatine in the tail suspension test. Amino Acids 47(4):795–811. https://doi.org/10.1007/s00726-014-1910-0

Article  CAS  PubMed  Google Scholar 

Dale E, Bang-Andersen B, Sanchez C (2015) Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem Pharmacol 95(2):81–97. https://doi.org/10.1016/j.bcp.2015.03.011

Article  CAS  PubMed  Google Scholar 

Dawood KM (2019) An update on benzofuran inhibitors: a patent review. Expert Opin Ther Pat 29(11):841–870. https://doi.org/10.1080/13543776.2019.1673727

Article  CAS  PubMed  Google Scholar 

Duan CL, Sun XH, Ji M, Yang H (2005) Effects of glutamate and MK-801 on the metabolism of dopamine in the striatum of normal and parkinsonian rats. Sheng Li Xue Bao 57(1):71–76

CAS  PubMed  Google Scholar 

Duan L, Gao Y, Shao X, Tian C, Fu C, Zhu G (2020) Research on the Development of Theme Trends and Changes of Knowledge Structures of Drug Therapy Studies on Major Depressive Disorder Since the 21(st) Century: A Bibliometric Analysis. Front Psychiatry 11:647. https://doi.org/10.3389/fpsyt.2020.00647

Article  PubMed  PubMed Central  Google Scholar 

Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338(6103):68–72. https://doi.org/10.1126/science.1222939

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duman RS, Sanacora G, Krystal JH (2019) Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron 102(1):75–90. https://doi.org/10.1016/j.neuron.2019.03.013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falcon-Moya R, Losada-Ruiz P, Rodriguez-Moreno A (2019) Kainate Receptor-Mediated Depression of Glutamate Release Involves Protein Kinase A in the Cerebellum. Int J Mol Sci 20(17):4124. https://doi.org/10.3390/ijms20174124

Fukumoto K, Toki H, Iijima M, Hashihayata T, Yamaguchi JI, Hashimoto K, Chaki S (2017) Antidepressant Potential of (R)-Ketamine in Rodent Models: Comparison with (S)-Ketamine. J Pharmacol Exp Ther 361(1):9–16. https://doi.org/10.1124/jpet.116.239228

Article  CAS  PubMed  Google Scholar 

Gall JI, Goncalves Alves A, Carraro Junior LR, da Silva Teixeira Rech T, Dos Santos Neto JS, Alves D, Pereira Soares MS, Spohr L, Spanevello RM, Bruning CA, Folharini Bortolatto C (2020) Insights into serotonergic and antioxidant mechanisms involved in antidepressant-like action of 2-phenyl-3-(phenylselanyl)benzofuran in mice. Prog Neuropsychopharmacol Biol Psychiatry 102:109956. https://doi.org/10.1016/j.pnpbp.2020.109956

Article  CAS  PubMed  Google Scholar 

Garay RP, Zarate CA Jr, Charpeaud T, Citrome L, Correll CU, Hameg A, Llorca PM (2017) Investigational drugs in recent clinical trials for treatment-resistant depression. Expert Rev Neurother 17(6):593–609. https://doi.org/10.1080/14737175.2017.1283217

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerhard DM, Duman RS (2018) Rapid-Acting Antidepressants: Mechanistic Insights and Future Directions. Curr Behav Neurosci Rep 5(1):36–47

Article  PubMed  PubMed Central  Google Scholar 

Goncalves FM, Neis VB, Rieger DK, Lopes MW, Heinrich IA, Costa AP, Rodrigues ALS, Kaster MP, Leal RB (2017a) Signaling pathways underlying the antidepressant-like effect of inosine in mice. Purinergic Signal 13(2):203–214. https://doi.org/10.1007/s11302-016-9551-2

Article  CAS  PubMed  Google Scholar 

Goncalves FM, Neis VB, Rieger DK, Peres TV, Lopes MW, Heinrich IA, Costa AP, Rodrigues ALS, Kaster MP, Leal RB (2017b) Glutamatergic system and mTOR-signaling pathway participate in the antidepressant-like effect of inosine in the tail suspension test. J Neural Transm (vienna) 124(10):1227–1237. https://doi.org/10.1007/s00702-017-1753-4

Article  CAS  PubMed  Google Scholar 

Grossert A, Mehrjardi NZ, Bailey SJ, Lindsay MA, Hescheler J, Saric T, Teusch N (2019) Ketamine Increases Proliferation of Human iPSC-Derived Neuronal Progenitor Cells via Insulin-Like Growth Factor 2 and Independent of the NMDA Receptor. Cells 8(10):1139. https://doi.org/10.3390/cells8101139

Henter ID, de Sousa RT, Zarate CA Jr (2018) Glutamatergic Modulators in Depression. Harv Rev Psychiatry 26(6):307–319. https://doi.org/10.1097/HRP.0000000000000183

Article  PubMed  PubMed Central  Google Scholar 

Kadriu B, Musazzi L, Henter ID, Graves M, Popoli M, Zarate CA Jr (2019) Glutamatergic Neurotransmission: Pathway to Developing Novel Rapid-Acting Antidepressant Treatments. Int J Neuropsychopharmacol 22(2):119–135. https://doi.org/10.1093/ijnp/pyy094

Article  CAS  PubMed  Google Scholar 

Kaster MP, Gadotti VM, Calixto JB, Santos AR, Rodrigues AL (2012) Depressive-like behavior induced by tumor necrosis factor-alpha in mice. Neuropharmacology 62(1):419–426. https://doi.org/10.1016/j.neuropharm.2011.08.018

Article  CAS  PubMed  Google Scholar 

Kaufling J (2019) Alterations and adaptation of ventral tegmental area dopaminergic neurons in animal models of depression. Cell Tissue Res 377(1):59–71. https://doi.org/10.1007/s00441-019-03007-9

Article  PubMed  Google Scholar 

Khanam H, Shamsuzzaman (2015) Bioactive Benzofuran derivatives: A review. Eur J Med Chem 97:483–504. https://doi.org/10.1016/j.ejmech.2014.11.039

Article  CAS  PubMed  Google Scholar 

Kielczykowska M, Kocot J, Lewandowska A, Zelazowska R, Musik I (2015) The protective influence of selenium on oxidant disturbances in brain of rats exposed to lithium. Physiol Res 64(5):739–746. https://doi.org/10.33549/physiolres.932910

Article  CAS  PubMed  Google Scholar 

Kim JH, Marton J, Ametamey SM, Cumming P (2020) A Review of Molecular Imaging of Glutamate Receptors. Molecules 25(20):4749. https://doi.org/10.3390/molecules25204749

Krystal JH, Sanacora G, Duman RS (2013) Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry 73(12):1133–1141. https://doi.org/10.1016/j.biopsych.2013.03.026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lander SS, Chornyy S, Safory H, Gross A, Wolosker H, Gaisler-Salomon I (2020) Glutamate dehydrogenase deficiency disrupts glutamate homeostasis in hippocampus and prefrontal cortex and impairs recognition memory. Genes Brain Behav 19(6):e12636. https://doi.org/10.1111/gbb.12636

Article  CAS  PubMed  Google Scholar 

Lener MS, Niciu MJ, Ballard ED, Park M, Park LT, Nugent AC, Zarate CA Jr (2017) Glutamate and Gamma-Aminobutyric Acid Systems in the Pathophysiology of Major Depression and Antidepressant Response to Ketamine. Biol Psychiatry 81(10):886–897. https://doi.org/10.1016/j.biopsych.2016.05.005

Article  CAS  PubMed  Google Scholar 

Li YF (2020) A hypothesis of monoamine (5-HT) - Glutamate/GABA long neural circuit: Aiming for fast-onset antidepressant discovery. Pharmacol Ther 208:107494. https://doi.org/10.1016/j.pharmthera.2020.107494

Article  CAS  PubMed  Google Scholar 

Limbad C, Oron TR, Alimirah F, Davalos AR, Tracy TE, Gan L, Desprez PY, Campisi J (2020) Astrocyte senescence promotes glutamate toxicity in cortical neurons. PLoS One 15(1):e0227887. https://doi.org/10.1371/journal.pone.0227887

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin CH, Yang HT, Lane HY (2019) D-glutamate, D-serine, and D-alanine differ in their roles in cognitive decline in patients with Alzheimer’s disease or mild cognitive impairment. Pharmacol Biochem Behav 185:172760. https://doi.org/10.1016/j.pbb.2019.172760

Article  CAS  PubMed  Google Scholar 

Lopez-Gil X, Jimenez-Sanchez L, Campa L, Castro E, Frago C, Adell A (2019) Role of Serotonin and Noradrenaline in the Rapid Antidepressant Action of Ketamine. ACS Chem Neurosci 10(7):3318–3326. https://doi.org/10.1021/acschemneuro.9b00288

Article  CAS  PubMed 

留言 (0)

沒有登入
gif