Ordering genetic testing by neurologists: points to consider

Shields AE, Burke W, Levy DE (2008) Differential use of available genetic tests among primary care physicians in the United States: results of a national survey. Genet Med 10(6):404–414. https://doi.org/10.1097/GIM.0b013e3181770184

Article  PubMed  PubMed Central  Google Scholar 

Mancuso M, Houlden H, Molnar MJ et al (2022) How to approach a neurogenetics diagnosis in different European countries: the European Academy of Neurology Neurogenetics Panel survey. Eur J Neurol 29(7):1885–1891. https://doi.org/10.1111/ene.15320

Article  PubMed  PubMed Central  Google Scholar 

Bradley L, Lynch SA (2021) Dying to see you? Deaths on a clinical genetics waiting list in the Republic of Ireland; what are the consequences? J Community Genet 12(1):121–127. https://doi.org/10.1007/s12687-020-00491-3

Article  PubMed  Google Scholar 

Shaw T, Metras J, Ting ZAL, Courtney E, Li ST, Ngeow J (2018) Impact of appointment waiting time on attendance rates at a clinical cancer genetics service. J Genet Couns 27(6):1473–1481. https://doi.org/10.1007/s10897-018-0259-z

Article  PubMed  Google Scholar 

Maiese DR, Keehn A, Lyon M, Flannery D, Watson M, Working groups of the national coordinating center for seven regional genetics service collaboratives (2019) Current conditions in medical genetics practice. Genet Med 21(8):1874–1877. https://doi.org/10.1038/s41436-018-0417-6

Article  PubMed  PubMed Central  Google Scholar 

Kotzer KE, Riley JD, Conta JH, Anderson CM, Schahl KA, Goodenberger ML (2014) Genetic testing utilization and the role of the laboratory genetic counselor. Clin Chim Acta 427:193–195. https://doi.org/10.1016/j.cca.2013.09.033

Article  CAS  PubMed  Google Scholar 

Miller CE, Krautscheid P, Baldwin EE et al (2014) Genetic counselor review of genetic test orders in a reference laboratory reduces unnecessary testing. Am J Med Genet A 164A(5):1094–1101. https://doi.org/10.1002/ajmg.a.36453

Article  PubMed  Google Scholar 

Sandhaus LM, Singer ME, Dawson NV, Wiesner GL (2001) Reporting BRCA test results to primary care physicians. Genet Med 3(5):327–334. https://doi.org/10.1097/00125817-200109000-00001

Article  CAS  PubMed  Google Scholar 

McGovern MM, Benach M, Zinberg R (2003) Interaction of genetic counselors with molecular genetic testing laboratories: implications for non-geneticist health care providers. Am J Med Genet 119A(3):297–301. https://doi.org/10.1002/ajmg.a.20196

Article  PubMed  Google Scholar 

Lalonde E, Rentas S, Lin F, Dulik MC, Skraban CM, Spinner NB (2020) Genomic diagnosis for pediatric disorders: revolution and evolution. Front Pediatr 8:373. https://doi.org/10.3389/fped.2020.00373

Article  PubMed  PubMed Central  Google Scholar 

Feldman EL, Goutman SA, Petri S et al (2022) Amyotrophic lateral sclerosis. Lancet 400(10360):1363–1380. https://doi.org/10.1016/S0140-6736(22)01272-7

Article  CAS  PubMed  Google Scholar 

Guo MH, Bardakjian TM, Brzozowski MR et al (2021) Temporal trends and yield of clinical diagnostic genetic testing in adult neurology. Am J Med Genet A 185(10):2922–2928. https://doi.org/10.1002/ajmg.a.62372

Article  PubMed  Google Scholar 

Thomas Q, Vitobello A, Tran Mau-Them F et al (2022) High efficiency and clinical relevance of exome sequencing in the daily practice of neurogenetics. J Med Genet 59(5):445–452. https://doi.org/10.1136/jmedgenet-2020-107369

Article  CAS  PubMed  Google Scholar 

Wright CF, FitzPatrick DR, Firth HV (2018) Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet 19(5):253–268. https://doi.org/10.1038/nrg.2017.116

Article  CAS  PubMed  Google Scholar 

Xue Y, Ankala A, Wilcox WR, Hegde MR (2015) Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med 17(6):444–451. https://doi.org/10.1038/gim.2014.122

Article  CAS  PubMed  Google Scholar 

Stevanovski I, Chintalaphani SR, Gammarachchi H et al (2022) Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Sci Adv 8(9):eabm5386. https://doi.org/10.1126/sciadv.abm5386

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dillon OJ, Lunke S, Stark Z et al (2018) Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. Eur J Hum Genet 26(5):644–651. https://doi.org/10.1038/s41431-018-0099-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Truty R, Rojahn S, Quyang K et al (2023) Patterns of mosaicism for sequence and copy-number variants discovered through clinical deep sequencing of disease-related genes in one million individuals. Am J Hum Genet 110(4):551–564. https://doi.org/10.1016/j.ajhg.2023.02.013

Article  CAS  PubMed  Google Scholar 

Saudi Mendeliome Group (2015) Comprehensive gene panels provide advantages over clinical exome sequencing for Mendelian diseases. Genome Biol 16(1):134. https://doi.org/10.1186/s13059-015-0693-2

Article  CAS  PubMed Central  Google Scholar 

Sawyer SL, Hartley T, Dyment DA et al (2016) Utility of whole-exome sequencing for those near the end of the diagnostic odyssey: time to address gaps in care. Clin Genet 89(3):275–284. https://doi.org/10.1111/cge.12654

Article  CAS  PubMed  Google Scholar 

Wang X, Shen X, Fang F et al (2019) Phenotype-driven virtual panel is an effective method to analyze WES data of neurological disease. Front Pharmacol 9:1529. https://doi.org/10.3389/fphar.2018.01529

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lionel AC, Costain G, Monfared N et al (2018) Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med 20(4):435–443. https://doi.org/10.1038/gim.2017.119

Article  CAS  PubMed  Google Scholar 

Wenger AM, Guturu H, Bernstein JA, Bejerano G (2017) Systematic reanalysis of clinical exome data yields additional diagnoses: implications for providers. Genet Med 19(2):209–214. https://doi.org/10.1038/gim.2016.88

Article  PubMed  Google Scholar 

Basel-Salmon L, Orenstein N, Markus-Bustani K et al (2019) Improved diagnostics by exome sequencing following raw data reevaluation by clinical geneticists involved in the medical care of individuals tested. Genet Med 21(6):1443–1451. https://doi.org/10.1038/s41436-018-0343-7

Article  PubMed  Google Scholar 

Basel-Salmon L, Ruhrman-Shahar N, Orenstein N et al (2021) When phenotype does not match genotype: importance of “real-time” refining of phenotypic information for exome data interpretation. Genet Med 23(1):215–221. https://doi.org/10.1038/s41436-020-00938-5

Article  CAS  PubMed  Google Scholar 

Meng L, Attali R, Talmy T et al (2023) Evaluation of an automated genome interpretation model for rare disease routinely used in a clinical genetic laboratory. Genet Med 25(6):100830. https://doi.org/10.1016/j.gim.2023.100830

Article  CAS  PubMed  Google Scholar 

Tan TY, Lunke S, Chong B et al (2019) A head-to-head evaluation of the diagnostic efficacy and costs of trio versus singleton exome sequencing analysis. Eur J Hum Genet 27(12):1791–1799. https://doi.org/10.1038/s41431-019-0471-9

Article  PubMed  PubMed Central  Google Scholar 

Retterer K, Juusola J, Cho MT et al (2016) Clinical application of whole-exome sequencing across clinical indications. Genet Med 18(7):696–704. https://doi.org/10.1038/gim.2015.148

Article  CAS  PubMed  Google Scholar 

Kalia SS, Adelman K, Bale SJ et al (2017) Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med 19(2):249–255. https://doi.org/10.1038/gim.2016.190

Article  PubMed  Google Scholar 

Miller DT, Lee K, Abul-Husn NS et al (2022) ACMG SF v3.1 list for reporting for secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 24(7):1407–1414. https://doi.org/10.1016/j.gim.2022.04.006

Article  CAS  PubMed  Google Scholar 

Fridman H, Behar DM, Carmi S, Levy-Lahad E (2020) Preconception carrier screening yield: effect of variants of unknown significance in partners of carriers with clinically significant variants. Genet Med 22(3):646–653. https://doi.org/10.1038/s41436-019-0676-x

Article  CAS  PubMed  Google Scholar 

Liu P, Meng L, Normand EA et al (2019) Reanalysis of clinical exome sequencing data. N Engl J Med 380(25):2478–2480. https://doi.org/10.1056/NEJMc1812033

Article  PubMed  PubMed Central  Google Scholar 

Godino L, Turchetti D, Jackson L, Hennessy C, Skirton H (2016) Impact of presymptomatic genetic testing on young adults: a systematic review. Eur J Hum Genet 24(4):496–503. https://doi.org/10.1038/ejhg.2015.153

Article  PubMed  Google Scholar 

Veras DF, Ayres S, Boyle J, Mansour J, Newson AJ, on behalf of the Education, Ethics and Social Issues Committee of the Human Genetics Society of Australasia (2020) Human Genetics Society of Australasia position statement: Predictive and presymptomatic genetic testing in adults and children. Twin Res Hum Genet 23(3):184–189. https://doi.org/10.1017/thg.2020.51

Article  Google Scholar 

Guttmacher AE, Porteous ME, McInerney JD (2007) Educating health-care professionals about genetics and genomics. Nat Rev Genet 8(2):151–157. https://doi.org/10.1038/nrg2007

Article  CAS  PubMed  Google Scholar 

Micha

留言 (0)

沒有登入
gif