Dietary patterns, brain morphology and cognitive performance in children: Results from a prospective population-based study

Prado EL, Dewey KG. Nutrition and brain development in early life. Nutr Rev. 2014;72(4):267–84. https://doi.org/10.1111/nure.12102.

Article  PubMed  Google Scholar 

Georgieff MK. Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr. 2007;85(2):614S-S620. https://doi.org/10.1093/ajcn/85.2.614S.

Article  CAS  PubMed  Google Scholar 

Borge TC, Aase H, Brantsæter AL, Biele G. The importance of maternal diet quality during pregnancy on cognitive and behavioural outcomes in children: a systematic review and meta-analysis. BMJ Open. 2017;7(9):1016777. https://doi.org/10.1136/bmjopen-2017-016777.

Article  Google Scholar 

Casey BJ, Getz S, Galvan A. The adolescent brain. Dev Rev. 2008;28(1):62–77. https://doi.org/10.1016/j.dr.2007.08.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol. 2002;13(1):3–9.

Article  CAS  PubMed  Google Scholar 

Mikkilä V, Räsänen L, Raitakari OT, Pietinen P, Viikari J. Consistent dietary patterns identified from childhood to adulthood: The Cardiovascular Risk in Young Finns Study. Br J Nutr. 2005;93(6):923–31. https://doi.org/10.1079/BJN20051418.

Article  CAS  PubMed  Google Scholar 

EDEN Mother-Child Cohort Study Group. Dietary patterns track from infancy to preschool age: cross-sectional and longitudinal perspectives. J Nutr. 2015;145(4):775–82. https://doi.org/10.3945/jn.114.201988.

Article  CAS  Google Scholar 

Luque V, Escribano J, Closa-Monasterolo R, et al. Unhealthy dietary patterns established in infancy track to mid-childhood: the EU childhood obesity project. J Nutr. 2018;148(5):752–9. https://doi.org/10.1093/jn/nxy025.

Article  PubMed  Google Scholar 

Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev. 2012;70(1):3–21. https://doi.org/10.1111/j.1753-4887.2011.00456.x.

Article  PubMed  Google Scholar 

Carlson A, Lino M, Gerrior S, Basiotis PP. Insight 25: September 2001: report card on the diet quality of children ages 2–9. Family Econ Nutrit Rev. 2003;15(2):52–5.

Google Scholar 

Jennings A, Welch A, van Sluijs EM, Griffin SJ, Cassidy A. Diet quality is independently associated with weight status in children aged 9–10 years. J Nutr. 2011;141(3):453–9.

Article  CAS  PubMed  Google Scholar 

van der Velde LA, Nguyen AN, Schoufour JD, et al. Diet quality in childhood: the Generation R Study. Eur J Nutr. 2019;58(3):1259–69. https://doi.org/10.1007/s00394-018-1651-z.

Article  PubMed  Google Scholar 

Liu J, Rehm CD, Onopa J, Mozaffarian D. Trends in Diet Quality Among Youth in the United States, 1999–2016. JAMA. 2020;323(12):1161–74. https://doi.org/10.1001/jama.2020.0878.

Article  PubMed  PubMed Central  Google Scholar 

Nyaradi A, Oddy WH, Hickling S, Li J, Foster JK. The relationship between nutrition in infancy and cognitive performance during adolescence. Front Nutr. 2015;2:2.

Article  PubMed  PubMed Central  Google Scholar 

Nyaradi A, Li J, Hickling S, Foster J, Oddy WH. The role of nutrition in children’s neurocognitive development, from pregnancy through childhood. Front Hum Neurosci. 2013;7:97.

Article  PubMed  PubMed Central  Google Scholar 

Nyaradi A, Foster JK, Hickling S, et al. Prospective associations between dietary patterns and cognitive performance during adolescence. J Child Psychol Psychiatry. 2014;55(9):1017–24.

Article  PubMed  Google Scholar 

Northstone K, Joinson C, Emmett P, Ness A, Paus T. Are dietary patterns in childhood associated with IQ at 8 years of age? A population-based cohort study. J Epidemiol Community Health. 2012;66(7):624–8.

Article  PubMed  Google Scholar 

Siervo M, Shannon OM, Llewellyn DJ, Stephan BCM, Fontana L. Mediterranean diet and cognitive function: from methodology to mechanisms of action. Free Radical Biol Med. 2021;176:105–17. https://doi.org/10.1016/j.freeradbiomed.2021.09.018.

Article  CAS  Google Scholar 

Pietschnig J, Penke L, Wicherts JM, Zeiler M, Voracek M. Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean? Neurosci Biobehav Rev. 2015;57:411–32.

Article  PubMed  Google Scholar 

Lange N, Froimowitz MP, Bigler ED, Lainhart JE, Brain Development Cooperative G. Associations between IQ, total and regional brain volumes, and demography in a large normative sample of healthy children and adolescents. Dev Neuropsychol. 2010;35(3):296–317.

Article  PubMed  PubMed Central  Google Scholar 

Gómez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci. 2008;9(7):568–78. https://doi.org/10.1038/nrn2421.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muth A-K, Park SQ. The impact of dietary macronutrient intake on cognitive function and the brain. Clin Nutr. 2021;40(6):3999–4010. https://doi.org/10.1016/j.clnu.2021.04.043.

Article  CAS  PubMed  Google Scholar 

Kanoski SE, Grill HJ. Hippocampus contributions to food intake control: mnemonic, neuroanatomical, and endocrine mechanisms. Biol Psychiat. 2017;81(9):748–56. https://doi.org/10.1016/j.biopsych.2015.09.011.

Article  PubMed  Google Scholar 

Douglass AM, Kucukdereli H, Ponserre M, et al. Central amygdala circuits modulate food consumption through a positive-valence mechanism. Nat Neurosci. 2017;20(10):1384–94. https://doi.org/10.1038/nn.4623.

Article  CAS  PubMed  Google Scholar 

Valladolid-Acebes I, Fole A, Martín M, et al. Spatial memory impairment and changes in hippocampal morphology are triggered by high-fat diets in adolescent mice. Is there a role of leptin. Neurobiol Learn Mem. 2013;106:18–25. https://doi.org/10.1016/j.nlm.2013.06.012.

Article  CAS  PubMed  Google Scholar 

Nakandakari SCBR, Munoz VR, Kuga GK, et al. Short-term high-fat diet modulates several inflammatory, ER stress, and apoptosis markers in the hippocampus of young mice. Brain Behav Immun. 2019;79:284–93.

Article  CAS  PubMed  Google Scholar 

Cigliano L, Spagnuolo MS, Crescenzo R, et al. Short-term fructose feeding induces inflammation and oxidative stress in the hippocampus of young and adult rats. Mol Neurobiol. 2018;55(4):2869–83.

Article  CAS  PubMed  Google Scholar 

Boitard C, Maroun M, Tantot F, et al. Juvenile obesity enhances emotional memory and amygdala plasticity through glucocorticoids. J Neurosci. 2015;35(9):4092–103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jacka FN, Cherbuin N, Anstey KJ, Sachdev P, Butterworth P. Western diet is associated with a smaller hippocampus: a longitudinal investigation. BMC Med. 2015;13(1):215. https://doi.org/10.1186/s12916-015-0461-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stadterman J, Belthoff K, Han Y, Kadesh AD, Yoncheva Y, Roy AK. A preliminary investigation of the effects of a western diet on hippocampal volume in children. Frontiers in Pediatrics. 2020;8.

Kooijman MN, Kruithof CJ, van Duijn CM, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243–64. https://doi.org/10.1007/s10654-016-0224-9.

Article  PubMed  Google Scholar 

Voortman T, Kiefte-de Jong JC, Geelen A, et al. The development of a diet quality score for preschool children and its validation and determinants in the Generation R Study. J Nutr. 2015;145(2):306–14. https://doi.org/10.3945/jn.114.199349.

Article  CAS  PubMed  Google Scholar 

White T, Muetzel RL, El Marroun H, et al. Paediatric population neuroimaging and the Generation R Study: the second wave. Eur J Epidemiol. 2018;33(1):99–125. https://doi.org/10.1007/s10654-017-0319-y.

Article  PubMed  Google Scholar 

Breedveld BC, Hulshof KFAM. Zo eten jonge peuters in Nederland 2002: Resultaten van het Voedingsstoffen Inname Onderzoek 2002.

Netherlands Nutrition Centre [Dutch: Voedingscentrum]. Results of the Dutch Food Consumption Survey 1997–1998 [Dutch: Zo eet Nederland: resultaten van de Voedselconsumptiepeiling1997–1998]. The Hague, the Netherlands1998.

Dutman AE, Stafleu A, Kruizinga A, et al. Validation of an FFQ and options for data processing using the doubly labelled water method in children. Public Health Nutr. 2011;14(3):410–7. https://doi.org/10.1017/s1368980010002119.

Article  PubMed  Google Scholar 

Barroso M, Beth SA, Voortman T, et al. Dietary patterns after the weaning and lactation period are associated with celiac disease autoimmunity in children. Gastroenterology. 2018;154(8):2087-96.e7. https://doi.org/10.1053/j.gastro.2018.02.024.

Article  PubMed  Google Scholar 

Voortman T, Leermakers ETM, Franco OH, et al. A priori and a posteriori dietary patterns at the age of 1 year and body composition at the age of 6 years: the Generation R Study. Eur J Epidemiol. 2016;31(8):775–83. https://doi.org/10.1007/s10654-016-0179-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jansen PR, Dremmen M, Van Den Berg A, et al. Incidental findings on brain imaging in the general pediatric population. N Engl J Med. 2017;377(16):1593–5.

Article  PubMed  Google Scholar 

Muetzel RL, Blanken LME, van der Ende J, et al. Tracking brain development and dimensional psychiatric symptoms in children: a longitudinal population-based neuroimaging study. Am J Psychiatry. 2018;175(1):54–62.

Article  PubMed 

留言 (0)

沒有登入
gif