Recognition and Management of the Long-term Effects of Cranial Radiation

•• Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021;18(3):170–86. This article is of major importance because due to the publication results of long-term clinical trial outcomes, and new diagnositic and prognostic algorithms, there was a need for new guidelines.

Article  PubMed  Google Scholar 

Darzy KH. Radiation-induced hypopituitarism. Curr Opin Endocrinol Diabetes Obes. 2013;20(4):342–53.

Article  CAS  PubMed  Google Scholar 

Ainsbury EA, Bouffler SD, Dörr W, Graw J, Muirhead CR, Edwards AA, et al. Radiation cataractogenesis: a review of recent studies. Radiat Res. 2009;172(1):1–9.

Article  CAS  PubMed  Google Scholar 

Barker FG 2nd, Chang SM, Valk PE, Pounds TR, Prados MD. 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer. 1997;79(1):115–26.

Article  CAS  PubMed  Google Scholar 

Lambert EM, Gunn GB, Gidley PW. Effects of radiation on the temporal bone in patients with head and neck cancer. Head Neck. 2016;38(9):1428–35.

Article  PubMed  Google Scholar 

Borras JM, Lievens Y, Barton M, Corral J, Ferlay J, Bray F, et al. How many new cancer patients in Europe will require radiotherapy by 2025? An ESTRO-HERO analysis. Radiother Oncol. 2016;119(1):5–11.

Article  PubMed  Google Scholar 

• Makale MT, McDonald CR, Hattangadi-Gluth JA, Kesari S. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol. 2017;13(1):52–64. This article describes mechanisms of brain injury.

Article  CAS  PubMed  Google Scholar 

Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD. Radiation-induced brain injury: a review. Front Oncol. 2012;2:73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyers CA, Smith JA, Bezjak A, Mehta MP, Liebmann J, Illidge T, et al. Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium: results of a randomized phase III trial. J Clin Oncol. 2004;22(1):157–65.

Article  CAS  PubMed  Google Scholar 

Ellingson BM, Chung C, Pope WB, Boxerman JL, Kaufmann TJ. Pseudoprogression, radionecrosis, inflammation or true tumor progression? Challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. J Neurooncol. 2017;134(3):495–504.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Terziev R, Psimaras D, Marie Y, Feuvret L, Berzero G, Jacob J, et al. Cumulative incidence and risk factors for radiation induced leukoencephalopathy in high grade glioma long term survivors. Sci Rep. 2021;11(1):10176.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burger PC, Mahley MS Jr, Dudka L, Vogel FS. The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer. 1979;44(4):1256–72.

Article  CAS  PubMed  Google Scholar 

•• Winter SF, Vaios EJ, Muzikansky A, Martinez-Lage M, Bussière MR, Shih HA, et al. Defining treatment-related adverse effects in patients with glioma: distinctive features of pseudoprogression and treatment-induced necrosis. Oncologist. 2020;25(8):e1221–32. This paper describes methods in defining radiation necrosis in radiologic studies.

Strenger V, Lackner H, Mayer R, Sminia P, Sovinz P, Mokry M, et al. Incidence and clinical course of radionecrosis in children with brain tumors. A 20-year longitudinal observational study. Strahlenther Onkol. 2013;189(9):759–64.

Article  CAS  PubMed  Google Scholar 

Huang X, Zhang X, Wang X, Rong X, Li Y, Li H, et al. A nomogram to predict symptomatic epilepsy in patients with radiation-induced brain necrosis. Neurology. 2020;95(10):e1392–403.

Article  CAS  PubMed  Google Scholar 

Winter SF, Loebel F, Loeffler J, Batchelor TT, Martinez-Lage M, Vajkoczy P, et al. Treatment-induced brain tissue necrosis: a clinical challenge in neuro-oncology. Neuro Oncol. 2019;21(9):1118–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asao C, Korogi Y, Kitajima M, Hirai T, Baba Y, Makino K, et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol. 2005;26(6):1455–60.

PubMed  PubMed Central  Google Scholar 

Rock JP, Scarpace L, Hearshen D, Gutierrez J, Fisher JL, Rosenblum M, et al. Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis. Neurosurgery. 2004;54(5):1111–7 (discussion 7-9).

Article  PubMed  Google Scholar 

Kimura T, Sako K, Tanaka K, Gotoh T, Yoshida H, Aburano T, et al. Evaluation of the response of metastatic brain tumors to stereotactic radiosurgery by proton magnetic resonance spectroscopy, 201TlCl single-photon emission computerized tomography, and gadolinium-enhanced magnetic resonance imaging. J Neurosurg. 2004;100(5):835–41.

Article  PubMed  Google Scholar 

Schwartz RB, Holman BL, Polak JF, Garada BM, Schwartz MS, Folkerth R, et al. Dual-isotope single-photon emission computerized tomography scanning in patients with glioblastoma multiforme: association with patient survival and histopathological characteristics of tumor after high-dose radiotherapy. J Neurosurg. 1998;89(1):60–8.

Article  CAS  PubMed  Google Scholar 

•• Chen X, Parekh VS, Peng L, Chan MD, Redmond KJ, Soike M, et al. Multiparametric radiomic tissue signature and machine learning for distinguishing radiation necrosis from tumor progression after stereotactic radiosurgery. Neurooncol Adv. 2021;3(1):vdab150. This article is of major recent importance as it describes a new technique (MRI-based multiparametric radiomics) to help distinguish between radiation necrosis and tumor progression.

PubMed  PubMed Central  Google Scholar 

Kotsarini C, Griffiths PD, Wilkinson ID, Hoggard N. A systematic review of the literature on the effects of dexamethasone on the brain from in vivo human-based studies: implications for physiological brain imaging of patients with intracranial tumors. Neurosurgery. 2010;67(6):1799–815 (discussion 815).

Article  PubMed  Google Scholar 

Wenger KJ, Wagner M, You SJ, Franz K, Harter PN, Burger MC, et al. Bevacizumab as a last-line treatment for glioblastoma following failure of radiotherapy, temozolomide and lomustine. Oncol Lett. 2017;14(1):1141–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys. 2011;79(5):1487–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu Y, Rong X, Hu W, Huang X, Li Y, Zheng D, et al. Bevacizumab monotherapy reduces radiation-induced brain necrosis in nasopharyngeal carcinoma patients: a randomized controlled trial. Int J Radiat Oncol Biol Phys. 2018;101(5):1087–95.

Article  CAS  PubMed  Google Scholar 

McPherson CM, Warnick RE. Results of contemporary surgical management of radiation necrosis using frameless stereotaxis and intraoperative magnetic resonance imaging. J Neurooncol. 2004;68(1):41–7.

Article  PubMed  Google Scholar 

•• Newman WC, Goldberg J, Guadix SW, Brown S, Reiner AS, Panageas K, et al. The effect of surgery on radiation necrosis in irradiated brain metastases: extent of resection and long-term clinical and radiographic outcomes. J Neurooncol. 2021;153(3):507–18. This article of importance outlined the role for extent of resection for radiation necrosis and its role in improving decreased use of steroids.

Article  PubMed  PubMed Central  Google Scholar 

Patel B, Kim AH. Laser Interstitial Thermal Therapy. Mo Med. 2020;117(1):50–5.

PubMed  PubMed Central  Google Scholar 

Chuba PJ, Aronin P, Bhambhani K, Eichenhorn M, Zamarano L, Cianci P, et al. Hyperbaric oxygen therapy for radiation-induced brain injury in children. Cancer. 1997;80(10):2005–12.

Article  CAS  PubMed  Google Scholar 

Cihan YB, Uzun G, Yildiz S, Dönmez H. Hyperbaric oxygen therapy for radiation-induced brain necrosis in a patient with primary central nervous system lymphoma. J Surg Oncol. 2009;100(8):732–5.

Article  PubMed  Google Scholar 

Henry RG, Vigneron DB, Fischbein NJ, Grant PE, Day MR, Noworolski SM, et al. Comparison of relative cerebral blood volume and proton spectroscopy in patients with treated gliomas. AJNR Am J Neuroradiol. 2000;21(2):357–66.

CAS  PubMed  PubMed Central  Google Scholar 

Rola R, Raber J, Rizk A, Otsuka S, VandenBerg SR, Morhardt DR, et al. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol. 2004;188(2):316–30.

Article  CAS  PubMed  Google Scholar 

Peiffer AM, Leyrer CM, Greene-Schloesser DM, Shing E, Kearns WT, Hinson WH, et al. Neuroanatomical target theory as a predictive model for radiation-induced cognitive decline. Neurology. 2013;80(8):747–53.

Article  PubMed  PubMed Central  Google Scholar 

•• Cramer CK, Cummings TL, Andrews RN, Strowd R, Rapp SR, Shaw EG, et al. Treatment of radiation-induced cognitive decline in adult brain tumor patients. Curr Treat Options Oncol. 2019;20(5):42. This article of importance is a review of treatment options for radiation-induced cognitive decline.

Article  PubMed  PubMed Central  Google Scholar 

Tsuruda JS, Kortman KE, Bradley WG, Wheeler DC, Van Dalsem W, Bradley TP. Radiation effects on cerebral white matter: MR evaluation. AJR Am J Roentgenol. 1987;149(1):165–71.

Article  CAS  PubMed  Google Scholar 

Chapman CH, Nagesh V, Sundgren PC, Buchtel H, Chenevert TL, Junck L, et al. Diffusion tensor imaging of normal-appearing white ma

留言 (0)

沒有登入
gif