NLRP7 participates in the human subcortical maternal complex and its variants cause female infertility characterized by early embryo arrest

Nikshad A, Aghlmandi A, Safaralizadeh R, Aghebati-Maleki L, Warkiani ME, Khiavi FM et al (2021) Advances of microfluidic technology in reproductive biology. Life Sci 265

Rigos I, Athanasiou V, Vlahos N, Papantoniou N, Profer D, Siristatidis C (2021) The addition of endometrial injury to freeze-all strategy in women with repeated implantation failures. J Clin Med 10. https://doi.org/10.3390/jcm10102162

Mu J, Wang W, Chen B, Wu L, Li B, Mao X et al (2019) Mutations in NLRP2 and NLRP5 cause female infertility characterised by early embryonic arrest. J Med Genet 56:471–480. https://doi.org/10.1136/jmedgenet-2018-105936

Article  CAS  PubMed  Google Scholar 

Liu J, Tan Z, He J, Jin T, Han Y, Hu L et al (2021) Two novel mutations in PADI6 and TLE6 genes cause female infertility due to arrest in embryonic development. J Assist Reprod Genet 38:1551–1559. https://doi.org/10.1007/s10815-021-02194-1

Article  PubMed  PubMed Central  Google Scholar 

Zhang W, Chen Z, Zhang D, Zhao B, Liu L, Xie Z et al (2019) KHDC3L mutation causes recurrent pregnancy loss by inducing genomic instability of human early embryonic cells. PLoS Biol 17

Zheng W, Zhou Z, Sha Q, Niu X, Sun X, Shi J et al (2020) Homozygous mutations in BTG4 cause zygotic cleavage failure and female infertility. Am J Hum Genet 107:24–33. https://doi.org/10.1016/j.ajhg.2020.05.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang W, Dong J, Chen B, Du J, Kuang Y, Sun X et al (2020) Homozygous mutations in REC114 cause female infertility characterised by multiple pronuclei formation and early embryonic arrest. J Med Genet 57:187–194. https://doi.org/10.1136/jmedgenet-2019-106379

Article  CAS  PubMed  Google Scholar 

Dong J, Zhang H, Mao X, Zhu J, Li D, Fu J et al (2021) Novel biallelic mutations in MEI1: expanding the phenotypic spectrum to human embryonic arrest and recurrent implantation failure. Hum Reprod 36:2371–2381. https://doi.org/10.1093/humrep/deab118

Article  CAS  PubMed  Google Scholar 

Wang W, Wang W, Xu Y, Shi J, Fu J, Chen B et al (2021) FBXO43 variants in patients with female infertility characterized by early embryonic arrest. Hum Reprod 36:2392–2402. https://doi.org/10.1093/humrep/deab131

Article  CAS  PubMed  Google Scholar 

Zheng W, Sha QQ, Hu H, Meng F, Zhou Q, Chen X et al (2021) Biallelic variants in ZFP36L2 cause female infertility characterised by recurrent preimplantation embryo arrest. J Med Genet. https://doi.org/10.1136/jmedgenet-2021-107933

Article  PubMed  Google Scholar 

Zhang YL, Zheng W, Ren P, Hu H, Tong X, Zhang SP et al (2021) Biallelic mutations in MOS cause female infertility characterized by human early embryonic arrest and fragmentation. EMBO Mol Med 13:e14887. https://doi.org/10.15252/emmm.202114887

Duéñez-Guzmán EA, Haig D (2014) The evolution of reproduction-related NLRP genes. J Mol Evol 78:194–201. https://doi.org/10.1007/s00239-014-9614-3

Article  CAS  PubMed  Google Scholar 

Zhang P, Dixon M, Zucchelli M, Hambiliki F, Levkov L, Hovatta O et al (2008) Expression analysis of the NLRP gene family suggests a role in human preimplantation development. PLoS One 3

Abi Nahed R, Reynaud D, Borg AJ, Traboulsi W, Wetzel A, Sapin V et al (2019) NLRP7 is increased in human idiopathic fetal growth restriction and plays a critical role in trophoblast differentiation. J Mol Med (Berl) 97:355–367. https://doi.org/10.1007/s00109-018-01737-x

Article  CAS  PubMed  Google Scholar 

Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R et al (2006) Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet 38:300–302. https://doi.org/10.1038/ng1740

Article  CAS  PubMed  Google Scholar 

Slim R, Fisher R, Milhavet F, Hemida R, Rojas S, Rittore C et al (2022) Biallelic NLRP7 variants in patients with recurrent hydatidiform mole: a review and expert consensus. Hum Mutat 43:1732–1744. https://doi.org/10.1002/humu.24439

Article  CAS  PubMed  Google Scholar 

Kalogiannidis I, Kalinderi K, Kalinderis M, Miliaras D, Tarlatzis B, Athanasiadis A (2018) Recurrent complete hydatidiform mole: where we are, is there a safe gestational horizon? Opinion and mini-review. J Assist Reprod Genet 35:967–973. https://doi.org/10.1007/s10815-018-1202-9

Article  PubMed  PubMed Central  Google Scholar 

Stevens FT, Katzorke N, Tempfer C, Kreimer U, Bizjak GI, Fleisch MC et al (2015) Gestational trophoblastic disorders: an update in 2015. Geburtshilfe Frauenheilkd 75:1043–1050. https://doi.org/10.1055/s-0035-1558054

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borchers A, Pieler T (2010) Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes (Basel) 1:413–426. https://doi.org/10.3390/genes1030413

Article  CAS  PubMed  Google Scholar 

Akoury E, Zhang L, Ao A, Slim R (2015) NLRP7 and KHDC3L, the two maternal-effect proteins responsible for recurrent hydatidiform moles, co-localize to the oocyte cytoskeleton. Hum Reprod 30:159–169. https://doi.org/10.1093/humrep/deu291

Article  CAS  PubMed  Google Scholar 

Bebbere D, Albertini DF, Coticchio G, Borini A, Ledda S (2021) The subcortical maternal complex: emerging roles and novel perspectives. Mol Hum Reprod 27. https://doi.org/10.1093/molehr/gaab043

Li L, Baibakov B, Dean J (2008) A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev Cell 15:416–425. https://doi.org/10.1016/j.devcel.2008.07.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu X, Gao Z, Qin D, Li L (2017) A maternal functional module in the mammalian oocyte-to-embryo transition. Trends Mol Med 23:1014–1023. https://doi.org/10.1016/j.molmed.2017.09.004

Article  PubMed  Google Scholar 

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Article  CAS  PubMed  Google Scholar 

Messaed C, Chebaro W, Di Roberto RB, Rittore C, Cheung A, Arseneau J et al (2011) NLRP7 in the spectrum of reproductive wastage: rare non-synonymous variants confer genetic susceptibility to recurrent reproductive wastage. J Med Genet 48:540–548. https://doi.org/10.1136/jmg.2011.089144

Article  CAS  PubMed  Google Scholar 

Wang C, Dai J, Qin N, Fan J, Ma H, Chen C et al (2022) Analyses of rare predisposing variants of lung cancer in 6,004 whole genomes in Chinese. Cancer Cell 40:1223-1239.e6. https://doi.org/10.1016/j.ccell.2022.08.013

Article  CAS  PubMed  Google Scholar 

Wang C, Lv H, Ling X, Li H, Diao F, Dai J et al (2021) Association of assisted reproductive technology, germline de novo mutations and congenital heart defects in a prospective birth cohort study. Cell Res 31:919–928. https://doi.org/10.1038/s41422-021-00521-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian X, Pascal G, Monget P (2009) Evolution and functional divergence of NLRP genes in mammalian reproductive systems. BMC Evol Biol 9:202. https://doi.org/10.1186/1471-2148-9-202

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mao L, Lou H, Lou Y, Wang N, Jin F (2014) Behaviour of cytoplasmic organelles and cytoskeleton during oocyte maturation. Reprod Biomed Online 28:284–299. https://doi.org/10.1016/j.rbmo.2013.10.016

Article  PubMed  Google Scholar 

Kreeger PK, Fernandes NN, Woodruff TK, Shea LD (2005) Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biol Reprod 73:942–950. https://doi.org/10.1095/biolreprod.105.042390

Article  CAS  PubMed  Google Scholar 

Landolsi H, Rittore C, Philibert L, Hmissa S, Gribaa M, Touitou I et al (2012) NLRP7 mutation analysis in sporadic hydatidiform moles in Tunisian patients: NLRP7 and sporadic mole. Arch Pathol Lab Med 136:646–651. https://doi.org/10.5858/arpa.2011-0399-OA

Article  CAS  PubMed  Google Scholar 

Sills ES, Obregon-Tito AJ, Gao H, McWilliams TK, Gordon AT, Adams CA et al (2017) Pathogenic variant in NLRP7 (19q13.42) associated with recurrent gestational trophoblastic disease: data from early embryo development observed during in vitro fertilization. Clin Exp Reprod Med 44:40–46. https://doi.org/10.5653/cerm.2017.44.1.40

Article  PubMed  PubMed Central  Google Scholar 

Yurttas P, Vitale AM, Fitzhenry RJ, Cohen-Gould L, Wu W, Gossen JA et al (2008) Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development 135:2627–2636. https://doi.org/10.1242/dev.016329

Article  CAS  PubMed  Google Scholar 

Yu XJ, Yi Z, Gao Z, Qin D, Zhai Y, Chen X et al (2014) The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics. Nat Commun 5:4887. https://doi.org/10.1038/ncomms5887

Article  CAS  PubMed  Google Scholar 

Gao Z, Zhang X, Yu X, Qin D, Xiao Y, Yu Y et al (2018) Zbed3 participates in the subcortical maternal complex and regulates the distribution of organelles. J Mol Cell Biol 10:74–88. https://doi.org/10.1093/jmcb/mjx035

Article  CAS  PubMed  Google Scholar 

Qin D, Gao Z, Xiao Y, Zhang X, Ma H, Yu X et al (2019) The subcortical maternal complex protein Nlrp4f is involved in cytoplasmic lattice formation and organelle distribution. Development 146. https://doi.org/10.1242/dev.183616

Mahadevan S, Sathappan V, Utama B, Lorenzo I, Kaskar K, Van den Veyver IB (2017) Maternally expressed NLRP2 links the subcortical maternal complex (SCMC) to fertility, embryogenesis and epigenetic reprogramming. Sci Rep 7:44667. https://doi.org/10.1038/srep44667

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng P, Dean J (2009) Role of Filia, a maternal effect gene, in maintaining euploidy during cleavage-stage mouse embryogenesis. Proc Natl Acad Sci U S A 106:7473–7478. https://doi.org/10.1073/pnas.0900519106

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif