Peptide-based PET imaging agent of tumor TIGIT expression

Chauvin JM, Zarour HM. TIGIT in cancer immunotherapy. J Immunother Cancer. 2020. https://doi.org/10.1136/jitc-2020-000957.

Article  PubMed  PubMed Central  Google Scholar 

Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, et al. Advances in cancer immunotherapy 2019—latest trends. J Exp Clin Cancer Res CR. 2019;38:268. https://doi.org/10.1186/s13046-019-1266-0.

Article  PubMed  Google Scholar 

Smyth MJ, Ngiow SF, Ribas A, Teng MW. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 2016;13:143–58. https://doi.org/10.1038/nrclinonc.2015.209.

Article  CAS  PubMed  Google Scholar 

Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019;16:563–80. https://doi.org/10.1038/s41571-019-0218-0.

Article  CAS  PubMed  Google Scholar 

Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50:1–11. https://doi.org/10.1038/s12276-018-0191-1.

Article  CAS  PubMed  Google Scholar 

Dougall WC, Kurtulus S, Smyth MJ, Anderson AC. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Immunol Rev. 2017;276:112–20. https://doi.org/10.1111/imr.12518.

Article  CAS  PubMed  Google Scholar 

Solomon BL, Garrido-Laguna I. TIGIT: a novel immunotherapy target moving from bench to bedside. Cancer Immunol Immunother CII. 2018;67:1659–67. https://doi.org/10.1007/s00262-018-2246-5.

Article  CAS  PubMed  Google Scholar 

Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 2014;26:923–37. https://doi.org/10.1016/j.ccell.2014.10.018.

Article  CAS  PubMed  Google Scholar 

Liu Z, Zhou Q, Wang Z, Zhang H, Zeng H, Huang Q, et al. Intratumoral TIGIT(+) CD8(+) T-cell infiltration determines poor prognosis and immune evasion in patients with muscle-invasive bladder cancer. J Immunother Cancer. 2020. https://doi.org/10.1136/jitc-2020-000978.

Article  PubMed  PubMed Central  Google Scholar 

Chiu DK, Yuen VW, Cheu JW, Wei LL, Ting V, Fehlings M, et al. Hepatocellular carcinoma cells up-regulate PVRL1, stabilizing PVR and inhibiting the cytotoxic T-cell response via TIGIT to mediate tumor resistance to PD1 inhibitors in mice. Gastroenterology. 2020;159:609–23. https://doi.org/10.1053/j.gastro.2020.03.074.

Article  CAS  PubMed  Google Scholar 

Sun Y, Luo J, Chen Y, Cui J, Lei Y, Cui Y, et al. Combined evaluation of the expression status of CD155 and TIGIT plays an important role in the prognosis of LUAD (lung adenocarcinoma). Int Immunopharmacol. 2020;80:106198. https://doi.org/10.1016/j.intimp.2020.106198.

Article  CAS  PubMed  Google Scholar 

Xu D, Zhao E, Zhu C, Zhao W, Wang C, Zhang Z, et al. TIGIT and PD-1 may serve as potential prognostic biomarkers for gastric cancer. Immunobiology. 2020;225:151915. https://doi.org/10.1016/j.imbio.2020.151915.

Article  CAS  PubMed  Google Scholar 

Burugu S, Dancsok AR, Nielsen TO. Emerging targets in cancer immunotherapy. Semin Cancer Biol. 2018;52:39–52. https://doi.org/10.1016/j.semcancer.2017.10.001.

Article  CAS  PubMed  Google Scholar 

Liu XG, Hou M, Liu Y. TIGIT, a novel therapeutic target for tumor immunotherapy. Immunol Invest. 2017;46:172–82. https://doi.org/10.1080/08820139.2016.1237524.

Article  CAS  PubMed  Google Scholar 

Blessin NC, Simon R, Kluth M, Fischer K, Hube-Magg C, Li W, et al. Patterns of TIGIT expression in lymphatic tissue, inflammation, and cancer. Dis Markers. 2019;2019:5160565. https://doi.org/10.1155/2019/5160565.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duan X, Liu J, Cui J, Ma B, Zhou Q, Yang X, et al. Expression of TIGIT/CD155 and correlations with clinical pathological features in human hepatocellular carcinoma. Mol Med Rep. 2019;20:3773–81. https://doi.org/10.3892/mmr.2019.10641.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Josefsson SE, Huse K, Kolstad A, Beiske K, Pende D, Steen CB, et al. T cells expressing checkpoint receptor TIGIT are enriched in follicular lymphoma tumors and characterized by reversible suppression of T-cell receptor signaling. Clin Cancer Res Off J Am Assoc Cancer Res. 2018;24:870–81. https://doi.org/10.1158/1078-0432.ccr-17-2337.

Article  CAS  Google Scholar 

Li W, Blessin NC, Simon R, Kluth M, Fischer K, Hube-Magg C, et al. Expression of the immune checkpoint receptor TIGIT in Hodgkin’s lymphoma. BMC Cancer. 2018;18:1209. https://doi.org/10.1186/s12885-018-5111-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hong X, Wang X, Wang T, Zhang X. Correlation of T cell immunoglobulin and ITIM domain (TIGIT) and programmed death 1 (PD-1) with clinicopathological characteristics of renal cell carcinoma may indicate potential targets for treatment. Med Sci Monit Int Med J Exp Clin Res. 2018;24:6861–72. https://doi.org/10.12659/msm.910388.

Article  CAS  Google Scholar 

Xu Y, Cui G, Jiang Z, Li N, Zhang X. Survival analysis with regard to PD-L1 and CD155 expression in human small cell lung cancer and a comparison with associated receptors. Oncol Lett. 2019;17:2960–8. https://doi.org/10.3892/ol.2019.9910.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Inozume T, Yaguchi T, Furuta J, Harada K, Kawakami Y, Shimada S. Melanoma cells control antimelanoma CTL responses via Interaction between TIGIT and CD155 in the effector phase. J Invest Dermatol. 2016;136:255–63. https://doi.org/10.1038/jid.2015.404.

Article  CAS  PubMed  Google Scholar 

Natarajan A, Mayer AT, Xu L, Reeves RE, Gano J, Gambhir SS. Novel radiotracer for ImmunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug Chem. 2015;26:2062–9. https://doi.org/10.1021/acs.bioconjchem.5b00318.

Article  CAS  PubMed  Google Scholar 

Ehlerding EB, England CG, McNeel DG, Cai W. Molecular imaging of immunotherapy targets in cancer. J Nucl Med Off Publ Soc Nucl Med. 2016;57:1487–92. https://doi.org/10.2967/jnumed.116.177493.

Article  CAS  Google Scholar 

Lv G, Sun X, Qiu L, Sun Y, Li K, Liu Q, et al. PET imaging of tumor PD-L1 expression with a highly specific nonblocking single-domain antibody. J Nucl Med Off Publ Soc Nucl Med. 2020;61:117–22. https://doi.org/10.2967/jnumed.119.226712.

Article  CAS  Google Scholar 

De Silva RA, Kumar D, Lisok A, Chatterjee S, Wharram B, Venkateswara Rao K, et al. Peptide-based (68)Ga-PET radiotracer for imaging PD-L1 expression in cancer. Mol Pharm. 2018;15:3946–52. https://doi.org/10.1021/acs.molpharmaceut.8b00399.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robu S, Richter A, Gosmann D, Seidl C, Leung D, Hayes W, et al. Synthesis and preclinical evaluation of (68)Ga-labeled adnectin, (68)Ga-BMS-986192 as a PET agent for imaging PD-L1 expression. J Nucl Med Offi Publ Soc Nucl Med. 2021. https://doi.org/10.2967/jnumed.120.258384.

Article  Google Scholar 

Shaffer T, Natarajan A, Gambhir SS. PET imaging of TIGIT expression on tumor-infiltrating lymphocytes. Clin Cancer Res Offi J Am Assoc Cancer Res. 2021;27:1932–40. https://doi.org/10.1158/1078-0432.ccr-20-2725.

Article  CAS  Google Scholar 

Wang X, Zhou M, Chen B, Liu H, Fang J, Xiang S, et al. Preclinical and exploratory human studies of novel (68)Ga-labeled D-peptide antagonist for PET imaging of TIGIT expression in cancers. Eur J Nucl Med Mol Imaging. 2022;49:2584–94. https://doi.org/10.1007/s00259-021-05672-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou X, Zuo C, Li W, Shi W, Zhou X, Wang H, et al. A novel d-peptide identified by mirror-image phage display blocks TIGIT/PVR for cancer immunotherapy. Angew Chem Int Ed Engl. 2020;59:15114–8. https://doi.org/10.1002/anie.202002783.

Article  CAS  PubMed  Google Scholar 

England CG, Ehlerding EB, Hernandez R, Rekoske BT, Graves SA, Sun H, et al. Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled pembrolizumab. J Nucl Med Off Publ Soc Nucl Med. 2017;58:162–8. https://doi.org/10.2967/jnumed.116.177857.

Article  CAS  Google Scholar 

Du Y, Liang X, Li Y, Sun T, Jin Z, Xue H, et al. Nuclear and fluorescent labeled PD-1-Liposome-DOX-(64)Cu/IRDye800CW allows improved breast tumor targeted imaging and therapy. Mol Pharm. 2017;14:3978–86. https://doi.org/10.1021/acs.molpharmaceut.7b00649.

Article  CAS  PubMed  Google Scholar 

Truillet C, Oh HLJ, Yeo SP, Lee CY, Huynh LT, Wei J, et al. Imaging PD-L1 expression with ImmunoPET. Bioconjug Chem. 2018;29:96–103. https://doi.org/10.1021/acs.bioconjchem.7b00631.

Article  CAS  PubMed  Google Scholar 

Lecocq Q, Zeven K, De Vlaeminck Y, Martens S, Massa S, Goyvaerts C, et al. Noninvasive imaging of the immune checkpoint LAG-3 using nanobodies, from development to pre-clinical use. Biomolecules. 2019. https://doi.org/10.3390/biom9100548.

Article  PubMed  PubMed Central  Google Scholar 

Wei W, Jiang D, Lee HJ, Engle JW, Akiba H, Liu J, et al. ImmunoPET imaging of TIM-3 in murine melanoma models. Adv Therapeutics. 2020. https://doi.org/10.1002/adtp.202000018.

Article  Google Scholar 

Wang GX, Guo LQ, Gainor JF, Fintelmann FJ. Immune checkpoint inhibitors in lung cancer: imaging considerations. AJR Am J Roentgenol. 2017;209:567–75. https://doi.org/10.2214/ajr.16.17770.

Article 

留言 (0)

沒有登入
gif