Roles of the gut microbiome in weight management

WHO. Malnutrition. WHO https://www.who.int/news-room/fact-sheets/detail/malnutrition (2021).

WHO. Obesity and overweight. WHO https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2021).

Popkin, B. M., Corvalan, C. & Grummer-Strawn, L. M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 395, 65–74 (2020).

Article  PubMed  Google Scholar 

Anastasiou, C. A., Karfopoulou, E. & Yannakoulia, M. Weight regaining: from statistics and behaviors to physiology and metabolism. Metabolism 64, 1395–1407 (2015).

Article  CAS  PubMed  Google Scholar 

Johannsen, D. L. et al. Metabolic slowing with massive weight loss despite preservation of fat-free mass. J. Clin. Endocrinol. Metab. 97, 2489–2496 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fothergill, E. et al. Persistent metabolic adaptation 6 years after ‘The Biggest Loser’ competition. Obesity 24, 1612–1619 (2016).

Article  PubMed  Google Scholar 

Guerrant, R. L., DeBoer, M. D., Moore, S. R., Scharf, R. J. & Lima, A. A. M. The impoverished gut — a triple burden of diarrhoea, stunting and chronic disease. Nat. Rev. Gastroenterol. Hepatol. 10, 220–229 (2013).

Article  PubMed  Google Scholar 

Veenendaal, M. V. E. et al. Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. Br. J. Obstet. Gynaecol. 120, 548–554 (2013).

Article  CAS  Google Scholar 

Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

Article  PubMed  PubMed Central  Google Scholar 

Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl Med. 1, 6ra14 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Cox, L. M. & Blaser, M. J. Antibiotics in early life and obesity. Nat. Rev. Endocrinol. 11, 182–190 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Cani, P. D. et al. Microbial regulation of organismal energy homeostasis. Nat. Metab. 1, 34–46 (2019).

Article  CAS  PubMed  Google Scholar 

Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Asmakh, M. & Zadjali, F. Use of germ-free animal models in microbiota-related research. J. Microbiol. Biotechnol. 25, 1583–1588 (2015).

Article  PubMed  Google Scholar 

Gheorghe, C. E. et al. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 13, 1941711 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Hayes, C. L. et al. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci. Rep. 8, 14184 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Kawai, Y. & Morotomi, M. Intestinal enzyme activities in germfree, conventional, and gnotobiotic rats associated with indigenous microorganisms. Infect. Immun. 19, 771–778 (1978).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Slezak, K. et al. Association of germ-free mice with a simplified human intestinal microbiota results in a shortened intestine. Gut Microbes 5, 176–182 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Fouladi, F. et al. Sequence variant analysis reveals poor correlations in microbial taxonomic abundance between humans and mice after gnotobiotic transfer. ISME J. 14, 1809–1820 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221–232 (2020).

Article  CAS  PubMed  Google Scholar 

Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006). This study establishes that the gut microbiome differs between individuals who are lean and obese and that obese phenotypes are transmissible to gnotobiotic mice.

Article  PubMed  Google Scholar 

Li, M. et al. Gut microbiota-bile acid crosstalk contributes to the rebound weight gain after calorie restriction in mice. Nat. Commun. 13, 2060 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016). This study implicates microbiome contributions to weight regain after weight loss.

Article  CAS  PubMed  Google Scholar 

Koren, O. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150, 470–480 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith, M. I. et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554 (2013). This study finds an immature gut microbiome configuration in a severe form of undernutrition.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liou, A. P. et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl Med. 5, 178ra41 (2013).

Article  PubMed  PubMed Central  Google Scholar 

von Schwartzenberg, R. J. et al. Caloric restriction disrupts the microbiota and colonization resistance. Nature 595, 272–277 (2021).

Article  Google Scholar 

Carmody, R. N. et al. Cooking shapes the structure and function of the gut microbiome. Nat. Microbiol. 4, 2052–2063 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014). This study shows that gut microbiome perturbations in early life can have long-term consequences even when signatures recover.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGuire, M. K. & McGuire, M. A. Microbiomes and childhood malnutrition: what is the evidence? Ann. Nutr. Metab. 77, 36–48 (2021).

Article  CAS  Google Scholar 

Vonaesch, P. et al. Stunted childhood growth is associated with decompartmentalization of the gastrointestinal tract and overgrowth of oropharyngeal taxa. Proc. Natl Acad. Sci. USA 115, E8489–E8498 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kimura, I. et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science 367, eaaw8429 (2020). This study demonstrates that exposure to SCFAs in utero alters development in a manner that protects against the adult metabolic consequences of a high-fat diet.

Article  CAS  PubMed  Google Scholar 

Mishra, A. et al. Microbial exposure during early human development primes fetal immune cells. Cell 184, 3394–3409 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schulfer, A. F. et al. Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat. Microbiol. 3, 234–242 (2018).

Article  CAS  PubMed  Google Scholar 

Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

Article  CAS  PubMed  Google Scholar 

Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cotillard, A. et al. A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project. Am. J. Clin. Nutr. 115, 432–443 (2022).

Article  PubMed  Google Scholar 

Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 27, 321–332 (2021). This study correlates microbiome composition with dietary records and metabolic panels, finding connections between specific microorganisms and health.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif