A new insight into the hepatoprotective effect of sildenafil: The role of H2S

Ala M, Mohammad Jafari R, Dehpour AR (2021) Sildenafil beyond erectile dysfunction and pulmonary arterial hypertension: Thinking about new indications. Fundam Clin Pharmacol 35:235–259. https://doi.org/10.1111/FCP.12633

Article  CAS  PubMed  Google Scholar 

Ali FEM, Azouz AA, Bakr AG et al (2018) Hepatoprotective effects of diosmin and/or sildenafil against cholestatic liver cirrhosis: The role of Keap-1/Nrf-2 and P38-MAPK/NF-κB/iNOS signaling pathway. Food Chem Toxicol 120:294–304. https://doi.org/10.1016/J.FCT.2018.07.027

Article  CAS  PubMed  Google Scholar 

Baran HA, Berk A, Kaymaz BM et al (2020) Antioxidant effect of sildenafil on cadmium-induced liver, lung and kidney injury. J Pharm Sci 45:37–44

Google Scholar 

Bektas S, Karakaya K, Can M et al (2016) The effects of tadalafil and pentoxifylline on apoptosis and nitric oxide synthase in liver ischemia/reperfusion injury. Kaohsiung J Med Sci 32:339–347. https://doi.org/10.1016/J.KJMS.2016.05.005

Article  PubMed  Google Scholar 

Cichoz-Lach H, Michalak A (2014) Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol 20:8082. https://doi.org/10.3748/WJG.V20.I25.8082

Article  PubMed  PubMed Central  Google Scholar 

Fouad AA, Hafez HM, Hamouda AAH (2020) Hydrogen sulfide modulates IL-6/STAT3 pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of methotrexate hepatotoxicity. Hum Exp Toxicol 39:77–85. https://doi.org/10.1177/0960327119877437

Article  CAS  PubMed  Google Scholar 

Fusco F, Di Villa D, Bianca R, Mitidieri E et al (2012) Sildenafil effect on the human bladder involves the L-cysteine/hydrogen sulfide pathway: A novel mechanism of action of phosphodiesterase type 5 inhibitors. Eur Urol 62:1174–1180. https://doi.org/10.1016/j.eururo.2012.07.025

Article  CAS  PubMed  Google Scholar 

van der Graaf M, Rojer LA, Helbing WA, et al (2019) Sildenafil for bronchopulmonary dysplasia and pulmonary hypertension: a meta-analysis. Pulm Circ 9:. https://doi.org/10.1177/2045894019837875

Gupta YK, Sharma M, Chaudhary G (2002) Pyrogallol-induced hepatotoxicity in rats: a model to evaluate antioxidant hepatoprotective agents. Methods Find Exp Clin Pharmacol 24:497–500. https://doi.org/10.1358/MF.2002.24.8.705070

Article  CAS  PubMed  Google Scholar 

Han YH, Kim SZ, Kim SH, Park WH (2008) Pyrogallol as a glutathione depletor induces apoptosis in HeLa cells. Int J Mol Med 21:721–730. https://doi.org/10.3892/IJMM.21.6.721

Article  CAS  PubMed  Google Scholar 

Inan M, Uz YH, Kizilay G et al (2013) Protective effect of sildenafil on liver injury induced by intestinal ischemia/reperfusion. J Pediatr Surg 48:1707–1715. https://doi.org/10.1016/J.JPEDSURG.2012.12.054

Article  PubMed  Google Scholar 

Kreisel W, Deibert P, Kupcinskas L et al (2015) The phosphodiesterase-5-inhibitor udenafil lowers portal pressure in compensated preascitic liver cirrhosis. A Dose-Finding Phase-II-Study Dig Liver Dis 47:144–150. https://doi.org/10.1016/J.DLD.2014.10.018

Article  CAS  PubMed  Google Scholar 

Li S, Tan HY, Wang N et al (2015) The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci 16:26087. https://doi.org/10.3390/IJMS161125942

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mani S, Cao W, Wu L, Wang R (2014) Hydrogen sulfide and the liver. Nitric Oxide - Biol Chem 41:62–71. https://doi.org/10.1016/j.niox.2014.02.006

Article  CAS  Google Scholar 

Massart J, Begriche K, Moreau C, Fromenty B (2017) Role of nonalcoholic fatty liver disease as risk factor for drug-induced hepatotoxicity. J Clin Transl Res 3:212. https://doi.org/10.18053/JCTRES.03.2017S1.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Menezes TN, Naumann GB, Mendonça AB et al (2019) (2019) Antioxidant effect of sildenafil: Potential hepatoprotection via differential expression of mitochondrial proteins in apolipoprotein E knockout mice. Pharmacol Rep 713(71):422–429. https://doi.org/10.1016/J.PHAREP.2019.01.005

Article  Google Scholar 

Molehin OR, Adeyanju AA, Adefegha SA et al (2018) Sildenafil, a phosphodiesterase-5 inhibitor, offers protection against carbon tetrachloride-induced hepatotoxicity in rat. J Basic Clin Physiol Pharmacol 29:29–35. https://doi.org/10.1515/JBCPP-2017-0011

Article  CAS  PubMed  Google Scholar 

Morsy MA, Ibrahim SA, Abdelwahab SA et al (2010) Curative effects of hydrogen sulfide against acetaminophen-induced hepatotoxicity in mice. Life Sci 87:692–698. https://doi.org/10.1016/J.LFS.2010.10.004

Article  CAS  PubMed  Google Scholar 

Münzel T, Afanas’ev IB, Kleschyov AL, Harrison DG (2002) Detection of superoxide in vascular tissue. Arterioscler Thromb Vasc Biol 22:1761–1768. https://doi.org/10.1161/01.ATV.0000034022.11764.EC

Article  PubMed  Google Scholar 

Otunctemur A, Ozbek E, Dursun M et al (2014) Protective effect of hydrogen sulfide on gentamicin-induced renal injury. Ren Fail 36:925–931. https://doi.org/10.3109/0886022X.2014.900599

Article  PubMed  Google Scholar 

Rives C, Fougerat A, Ellero-Simatos S et al (2020) Oxidative stress in NAFLD: Role of nutrients and food contaminants. Biomol 10:1–69. https://doi.org/10.3390/biom10121702

Article  CAS  Google Scholar 

Rodrigues BP, Campagnaro BP, Balarini CM et al (2013) Sildenafil ameliorates biomarkers of genotoxicity in an experimental model of spontaneous atherosclerosis. Lipids Health Dis 12:1–8. https://doi.org/10.1186/1476-511X-12-128/FIGURES/3

Article  Google Scholar 

Savvanis S, Nastos C, Tasoulis MK, et al (2014) Sildenafil attenuates hepatocellular injury after liver ischemia reperfusion in rats: a preliminary study. Oxid Med Cell Longev 2014:. https://doi.org/10.1155/2014/161942

Sevin G, Alan E, Demir S et al (2022) Comparative evaluation of relaxant effects of three prangos species on mouse corpus cavernosum: Chemical characterization and the relaxant mechanisms of action of P. pabularia and (+)-oxypeucedanin. J Ethnopharmacol 284:114823. https://doi.org/10.1016/J.JEP.2021.114823

Article  CAS  PubMed  Google Scholar 

Singal AK, Jampana SC, Weinman SA (2011) Antioxidants as therapeutic agents for liver disease. Liver Int 31:1432–1448. https://doi.org/10.1111/J.1478-3231.2011.02604.X

Article  CAS  PubMed  PubMed Central  Google Scholar 

Upadhyay G, Kumar A, Singh MP (2007) Effect of silymarin on pyrogallol- and rifampicin-induced hepatotoxicity in mouse. Eur J Pharmacol 565:190–201. https://doi.org/10.1016/J.EJPHAR.2007.03.004

Article  CAS  PubMed  Google Scholar 

Upadhyay G, Singh AK, Kumar A et al (2008) Resveratrol modulates pyrogallol-induced changes in hepatic toxicity markers, xenobiotic metabolizing enzymes and oxidative stress. Eur J Pharmacol 596:146–152. https://doi.org/10.1016/J.EJPHAR.2008.08.019

Article  CAS  PubMed  Google Scholar 

Upadhyay G, Gupta SP, Prakash O, Singh MP (2010) Pyrogallol-mediated toxicity and natural antioxidants: Triumphs and pitfalls of preclinical findings and their translational limitations. Chem Biol Interact 183:333–340. https://doi.org/10.1016/J.CBI.2009.11.028

Article  CAS  PubMed  Google Scholar 

Wang R (2012) Physiological implications of hydrogen sulfide: A whiff exploration that blossomed. Physiol Rev 92:791–896. https://doi.org/10.1152/physrev.00017.2011

Article  CAS  PubMed  Google Scholar 

Wen YD, Wang H, Kho SH et al (2013) Hydrogen Sulfide Protects HUVECs against Hydrogen Peroxide Induced Mitochondrial Dysfunction and Oxidative Stress. Plos One 8:e53147. https://doi.org/10.1371/journal.pone.0053147

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu D, Zheng N, Qi K, et al (2015) Exogenous hydrogen sulfide mitigates the fatty liver in obese mice through improving lipid metabolism and antioxidant potential. Med Gas Res 5:. https://doi.org/10.1186/S13618-014-0022-Y

Wu DD, Wang DY, Li HM, et al (2019) Hydrogen sulfide as a novel regulatory factor in liver health and disease. Oxid Med Cell Longev 2019:. https://doi.org/10.1155/2019/3831713

Yetik-Anacak G, Sevin G, Ozzayım O et al (2016) Hydrogen sulfide: A novel mechanism for the vascular protection by resveratrol under oxidative stress in mouse aorta. Vascul Pharmacol 87:76–82. https://doi.org/10.1016/j.vph.2016.08.003

Article  CAS  PubMed  Google Scholar 

Younossi Z, Tacke F, Arrese M et al (2019) Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 69:2672–2682. https://doi.org/10.1002/hep.30251

Article  PubMed  Google Scholar 

Yu L, Li S, Tang X et al (2017) Diallyl trisulfide ameliorates myocardial ischemia-reperfusion injury by reducing oxidative stress and endoplasmic reticulum stress-mediated apoptosis in type 1 diabetic rats: role of SIRT1 activation. Apoptosis 22:942–954. https://doi.org/10.1007/S10495-017-1378-Y

Article  CAS  PubMed  Google Scholar 

Zeng T, Zhang CL, Zhu ZP et al (2008) Diallyl trisulfide (DATS) effectively attenuated oxidative stress-mediated liver injury and hepatic mitochondrial dysfunction in acute ethanol-exposed mice. Toxicology 252:86–91. https://doi.org/10.1016/J.TOX.2008.07.062

Article  CAS  PubMed  Google Scholar 

Zeng T, Zhang CL, Song FY et al (2013) The activation of HO-1/Nrf-2 contributes to the protective effects of diallyl disulfide (DADS) against ethanol-induced oxidative stress. Biochim Biophys Acta - Gen Subj 1830:4848–4859. https://doi.org/10.1016/J.BBAGEN.2013.06.028

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif