CPEB and translational control by cytoplasmic polyadenylation: impact on synaptic plasticity, learning, and memory

Kang H, Schuman EM. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science. 1996;273:1402–6.

Article  CAS  PubMed  Google Scholar 

Martin KC, Casadio A, Zhu H, Yaping E, Rose JC, Chen M, et al. Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell. 1997;91:927–38.

Article  CAS  PubMed  Google Scholar 

Frey U, Morris RG. Synaptic tagging and long-term potentiation. Nature. 1997;385:533–6.

Article  CAS  PubMed  Google Scholar 

Huber KM, Kayser MS, Bear MF. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science. 2000;288:1254–7.

Article  CAS  PubMed  Google Scholar 

Hake LE, Richter JD. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell. 1994;79:617–27.

Article  CAS  PubMed  Google Scholar 

Groisman I, Huang YS, Mendez R, Cao Q, Theurkauf W, Richter JD. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell. 2000;103:435–47.

Article  CAS  PubMed  Google Scholar 

Groisman I, Jung MY, Sarkissian M, Cao Q, Richter JD. Translational control of the embryonic cell cycle. Cell. 2002;109:473–83.

Article  CAS  PubMed  Google Scholar 

Afroz T, Skrisovska L, Belloc E, Guillen-Boixet J, Mendez R, Allain FH. A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins. Genes Dev. 2014;28:1498–514.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang YS, Kan MC, Lin CL, Richter JD. CPEB3 and CPEB4 in neurons: analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. EMBO J. 2006;25:4865–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurihara Y, Tokuriki M, Myojin R, Hori T, Kuroiwa A, Matsuda Y, et al. CPEB2, a novel putative translational regulator in mouse haploid germ cells. Biol Reprod. 2003;69:261–8.

Article  CAS  PubMed  Google Scholar 

Mendez R, Richter JD. Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol. 2001;2:521–9.

Article  CAS  PubMed  Google Scholar 

Poetz F, Lebedeva S, Schott J, Lindner D, Ohler U, Stoecklin G. Control of immediate early gene expression by CPEB4-repressor complex-mediated mRNA degradation. Genome Biol. 2022;23:193.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duran-Arque B, Canete M, Castellazzi CL, Bartomeu A, Ferrer-Caelles A, Reina O, et al. Comparative analyses of vertebrate CPEB proteins define two subfamilies with coordinated yet distinct functions in post-transcriptional gene regulation. Genome Biol. 2022;23:192.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang XP, Cooper NG. Comparative in silico analyses of cpeb1-4 with functional predictions. Bioinform Biol Insights. 2010;4:61–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guillén-Boixet J, Buzon V, Salvatella X, Méndez R. CPEB4 is regulated during cell cycle by ERK2/Cdk1-mediated phosphorylation and its assembly into liquid-like droplets. eLife. 2016;5:e19298.

Article  PubMed  PubMed Central  Google Scholar 

Darnell JE, Philipson L, Wall R, Adesnik M. Polyadenylic acid sequences: role in conversion of nuclear RNA into messenger RNA. Science. 1971;174:507–10.

Article  CAS  PubMed  Google Scholar 

Mangus DA, Evans MC, Jacobson A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol. 2003;4:223.

Article  PubMed  PubMed Central  Google Scholar 

Merrick WC, Pavitt GD. Protein synthesis initiation in eukaryotic cells. Cold Spring Harb Perspect Biol. 2018;10:a033092.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belloc E, Mendez R. A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature. 2008;452:1017–21.

Article  CAS  PubMed  Google Scholar 

Fukao A, Fujiwara T. The coupled and uncoupled mechanisms by which trans-acting factors regulate mRNA stability and translation. J Biochem. 2017;161:309–14.

CAS  PubMed  Google Scholar 

Pique M, Lopez JM, Foissac S, Guigo R, Mendez R. A combinatorial code for CPE-mediated translational control. Cell. 2008;132:434–48.

Article  CAS  PubMed  Google Scholar 

Rouhana L, Wang L, Buter N, Kwak JE, Schiltz CA, Gonzalez T, et al. Vertebrate GLD2 poly(A) polymerases in the germline and the brain. RNA. 2005;11:1117–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barnard DC, Ryan K, Manley JL, Richter JD. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell. 2004;119:641–51.

Article  CAS  PubMed  Google Scholar 

Mendez R, Murthy KG, Ryan K, Manley JL, Richter JD. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell. 2000;6:1253–9.

Article  CAS  PubMed  Google Scholar 

Udagawa T, Swanger SA, Takeuchi K, Kim JH, Nalavadi V, Shin J, et al. Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Mol Cell. 2012;47:253–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burns DM, D’Ambrogio A, Nottrott S, Richter JD. CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature. 2011;473:105–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim JH, Richter JD. Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell. 2006;24:173–83.

Article  CAS  PubMed  Google Scholar 

Igea A, Mendez R. Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4. EMBO J. 2010;29:2182–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ogami K, Hosoda N, Funakoshi Y, Hoshino S. Antiproliferative protein Tob directly regulates c-myc proto-oncogene expression through cytoplasmic polyadenylation element-binding protein CPEB. Oncogene. 2014;33:55–64.

Article  CAS  PubMed  Google Scholar 

Ivshina M, Lasko P, Richter JD. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu Rev Cell Dev Biol. 2014;30:393–415.

Weill L, Belloc E, Bava FA, Mendez R. Translational control by changes in poly(A) tail length: recycling mRNAs. Nat Struct Mol Biol. 2012;19:577–85.

Article  CAS  PubMed  Google Scholar 

Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell. 1999;4:1017–27.

Article  CAS  PubMed  Google Scholar 

Jung MY, Lorenz L, Richter JD. Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol Cell Biol. 2006;26:4277–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mendez R, Barnard D, Richter JD. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J. 2002;21:1833–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Setoyama D, Yamashita M, Sagata N. Mechanism of degradation of CPEB during Xenopus oocyte maturation. Proc Natl Acad Sci USA. 2007;104:18001–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suner C, Sibilio A, Martin J, Castellazzi CL, Reina O, Dotu I, et al. Macrophage inflammation resolution requires CPEB4-directed offsetting of mRNA degradation. Elife. 2022;11:e75873.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuge H, Brownlee GG, Gershon PD, Richter JD. Cap ribose methyla

留言 (0)

沒有登入
gif