Establishment and Expansion Scenario of Drosophila suzukii (Diptera: Drosophilidae) in Central Brazil

Aluja M, Ordano M, Guillén L, Rull J (2012) Understanding long-term fruit fly (Diptera: Tephritidae) population dynamics: Implications for areawide management. J Econ Entomol 105:823–836. https://doi.org/10.1603/EC11353

Article  PubMed  Google Scholar 

Andreazza F, Haddi K, Oliveira EE, Ferreira JAM (2016) Drosophila suzukii (Diptera: Drosophilidae) arrives at Minas Gerais State, a Main Strawberry production Region in Brazil. Florida Entomologist 99:796–798. https://doi.org/10.1653/024.099.0439

Article  Google Scholar 

Andreazza F, Bernardi D, dos Santos RSS et al (2017) Drosophila suzukii in Southern Neotropical Region: current status and future perspectives. Neotrop Entomol 46:591–605. https://doi.org/10.1007/s13744-017-0554-7

Article  CAS  PubMed  Google Scholar 

Asplen MK, Anfora G, Biondi A et al (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci (2004) 88:469–494. https://doi.org/10.1007/s10340-015-0681-z

Article  Google Scholar 

Bächli G (2022) TaxoDros: the database on taxonomy of drosophilidae. URL http://taxodros.unizh.ch/. Last access in 25 July 2022

Barnagaud JY, Barbaro L, Papaïx J et al (2014) Habitat filtering by landscape and local forest composition in native and exotic New Zealand birds. Ecology 95:78–87. https://doi.org/10.1890/13-0791.1

Article  PubMed  Google Scholar 

Bellamy DE, Sisterson MS, Walse SS (2013) Quantifying host potentials: indexing postharvest fresh fruits for spotted Wing Drosophila, Drosophila suzukii. PLoS One 8. https://doi.org/10.1371/journal.pone.0061227

Bellard C, Bertelsmeier C, Leadley P et al (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

Article  PubMed  PubMed Central  Google Scholar 

Benito NP, Lopes-da-Silva M, dos Santos RSS (2016) Potential spread and economic impact of invasive Drosophila suzukii in Brazil. Pesqui Agropecu Bras 51:571–578. https://doi.org/10.1590/S0100-204X2016000500018

Article  Google Scholar 

Bitner-Mathé BC, Victorino J, Faria FS (2014) Drosophila suzukii has been found in tropical Atlantic rainforest in southeastern Brazil. Drosoph Inf Serv 97:136–137

Google Scholar 

Bradie J, Leung B (2017) A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J Biogeogr 44:1344–1361. https://doi.org/10.1111/jbi.12894

Calabria G, Máca J, Bächli G et al (2012) First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J Appl Entomol 136:139–147. https://doi.org/10.1111/j.1439-0418.2010.01583.x

Article  Google Scholar 

Chandler JA, Lang J, Bhatnagar S et al (2011) Bacterial communities of diverse Drosophila species: Ecological context of a host-microbe model system. PLoS Genet 7. https://doi.org/10.1371/journal.pgen.1002272

Charles H, Dukes JS (2007) Impacts of invasive species on ecosystem services. Biol Invasions 193:217–237. https://doi.org/10.1007/978-3-540-36920-2_13

Article  Google Scholar 

Chassagnard MT, Tsacas L (1993) Le sous-genre Zaprionus s. str.: définition de groupes d’espèces et révision du sous-groupe Vittiger (Diptera: Drosophilidae). Annales de la Société Entomologique De France 29:173–194

Google Scholar 

Colwell RK, Elsensohn JE (2014) EstimateS turns 20: Statistical estimation of species richness and shared species from samples, with non-parametric extrapolation. Ecography 37:609–613. https://doi.org/10.1111/ecog.00814

Article  Google Scholar 

Costello C, Springborn M, McAusland C, Solow A (2007) Unintended biological invasions: Does risk vary by trading partner? J Environ Econ Manage 54:262–276. https://doi.org/10.1016/j.jeem.2007.06.001

Article  Google Scholar 

da Mata RA, Roque F, Tidon R (2008b) Drosophilids (Insecta, Diptera) of the Paranã Valley: Eight new records for the Cerrado biome. Biota Neotrop 8:55–60. https://doi.org/10.1590/S1676-06032008000100006

Article  Google Scholar 

da Mata RA, Tidon R, Côrtes LG et al (2010a) Invasive and flexible: Niche shift in the drosophilid Zaprionus indianus (Insecta, Diptera). Biol Invasions 12:1231–1241. https://doi.org/10.1007/s10530-009-9542-0

Article  Google Scholar 

da Mata RA, Roque F, Tidon R (2015a) Measuring the variability of the drosophilid assemblages associated with forests of the Brazilian savanna across temporal and spatial scales. Natureza e Conservacao 13:166–170. https://doi.org/10.1016/j.ncon.2015.11.005

Article  Google Scholar 

David JR, Gibert P, Gravot E, Petavy G, Morin JP, Karan D, Moreteau B (1997) Phenotypic plasticity and developmental temperature in Drosophila: analysis and significance of reaction norms of morphometrical traits. J Therm Biol 22:441–451. https://doi.org/10.1016/S0306-4565(97)00063-6

Article  Google Scholar 

David JR, Araripe LO, Chakir M, Legout H, Lemos B, Petavy G et al (2005) Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding Drosophila climatic adaptations. J Evol Biol 18:838–846. https://doi.org/10.1111/j.1420-9101.2005.00914.x

Article  CAS  PubMed  Google Scholar 

David JR, Allemand R, van Herrewege J, et al (1983) Ecophysiology: Abiotic Factors. In: Ashburner M, Carson HL, Thompson J (eds) The Genetics and Biology of Drosophila. Academic Press, New York, pp 105–170

Davis J, Tsacas L (1981) Cosmopolitan, subcosmopolitan and widespread species: Different strategies within the Drosophilid family (Diptera). Soc Biogeografy 57:11–26

Google Scholar 

Deprá M, Poppe JL, Schmitz HJ et al (2014) The first records of the invasive pest Drosophila suzukii in the South American continent. J Pest Sci (2004) 87:379–383. https://doi.org/10.1007/s10340-014-0591-5

Article  Google Scholar 

Dobzhansky T, Pavan C (1943) Chromosome complements of some South-Brazilian species of Drosophila. Proc Natl Acad Sci U S A 29:368

Article  CAS  PubMed  PubMed Central  Google Scholar 

Döge JS, Oliveira HV, Tidon R (2015) Rapid response to abiotic and biotic factors controls population growth of two invasive drosophilids (Diptera) in the brazilian savanna. Biol Invasions 17:2461–2474. https://doi.org/10.1007/s10530-015-0889-0

Article  Google Scholar 

Dormann CF, Elith J, Bacher S et al (2013) Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

Article  Google Scholar 

Eben A, Reifenrath M, Briem F et al (2018) Response of Drosophila suzukii (Diptera: Drosophilidae) to extreme heat and dryness. Agric for Entomol 20:113–121. https://doi.org/10.1111/afe.12235

Article  Google Scholar 

Emerich PP, Valadão H, Silva JRVP, Tidon R (2012) High abundance of Neotropical Drosophilids (Diptera: Drosophilidae) in four cultivated areas of Central Brazil. Neotrop Entomol 41:83–88. https://doi.org/10.1007/s13744-011-0004-x

Article  PubMed  Google Scholar 

Fei S, Phillips J, Shouse M (2014) Biogeomorphic impacts of invasive species. Annu Rev Ecol Evol Syst 45:69–87. https://doi.org/10.1146/annurev-ecolsys-120213-091928

Article  Google Scholar 

Ferreira LB, Tidon R (2005) Colonizing potential of Drosophilidae (Insecta, Diptera) in environments with different grades of urbanization. Biodivers Conserv 14:1809–1821. https://doi.org/10.1007/s10531-004-0701-4

Article  Google Scholar 

Gallardo B, Clavero M, Sánchez MI, Vilà M (2016) Global ecological impacts of invasive species in aquatic ecosystems. Glob Chang Biol 22:151–163. https://doi.org/10.1111/gcb.13004

Article  PubMed  Google Scholar 

Garcia CF, Hochmüller CJC, Valente VLS, Schmitz HJ (2012) Drosophilid assemblages at different urbanization levels in the City of Porto Alegre, State of Rio Grande do Sul, Southern Brazil. Neotrop Entomol 41:32–41. https://doi.org/10.1007/s13744-011-0007-7

Article  CAS  PubMed  Google Scholar 

Garcia FRM, Lasa R, Funes CF, Buzzetti K (2022) Drosophila suzukii management in Latin America: current status and perspectives. J Econ Entomol 115:1008–1023. https://doi.org/10.1093/jee/toac052

Article  PubMed  Google Scholar 

Gardiner MM, Landis DA, Gratton C et al (2009) Landscape composition influences patterns of native and exotic lady beetle abundance. Divers Distrib 15:554–564. https://doi.org/10.1111/j.1472-4642.2009.00563.x

Article  Google Scholar 

Goñi B, Martinez M, Valente V, Vilela C (1998) Preliminary data on the Drosophila species (Diptera, Drosophilidae) from Uruguay. Rev Bras Entomol 42:131–140

Google Scholar 

González G, Mary AL, Goñi B (2015) Drosophila suzukii (Matsumura) found in Uruguay. Drosoph Inf Serv 98:103–107

Google Scholar 

Goodhue RE, Bolda M, Farnsworth D et al (2011) Spotted wing drosophila infestation of California strawberries and raspberries: economic analysis of potential revenue losses and control costs. Pest Manag Sci 67:1396–1402. https://doi.org/10.1002/ps.2259

Article  CAS  PubMed  Google Scholar 

Gottschalk MS, de Toni DC, Valente VLS, Hofmann PRP (2007) Changes in Brazilian Drosophilidae (Diptera) assemblages across an urbanisation gradient. Neotrop Entomol 36:848–862. https://doi.org/10.1590/S1519-566X2007000600005

Article  PubMed  Google Scholar 

Graham CH, Moritz C, Williams SE (2006) Habitat history improves prediction of biodiversity in rainforest fauna. Proc Nat Acad Sci 103:632–636. https://doi.org/10.1073/pnas.0505754103

Guédot C, Avanesyan A, Hietala-Henschell K (2018) Effect of temperature and humidity on the seasonal phenology of drosophila suzukii (diptera: Drosophilidae) in wisconsin. Environ Entomol 47:1365–1375. https://doi.org/10.1093/ee/nvy159

Article  PubMed  Google Scholar 

Guisan A, Tingley R, Baumgartner JB, et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

Hejda M, Pyšek P, Jarošík V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403. https://doi.org/10.1111/j.1365-2745.2009.01480.x

Article  Google Scholar 

Hijmans RJ, Phillips S, Leathwick J, Elith J (2017) dismo: Species distribution modeling. R package version, 1: 1–1

Hill MP, Hoffmann AA, Macfadyen S et al (2012) Understanding niche shifts: using current and historical data to model the invasive redlegged earth mite, Halotydeus destructor. Divers Distrib 18:191–203. https://doi.org/10.1111/j.1472-4642.2011.00844.x

Article  Google Scholar 

Hugall A, Moritz C, Moussalli A, Stanisic J (2002) Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). PNAS 99:6112–6117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hulme PE (2021) Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth 4:666–679

Article  Google Scholar 

Jiménez-Valverde A, Peterson AT, Soberón J, et al. (2011) Use of niche models in invasive species risk assessments. Biol Invas 13:2785–2797. https://doi.org/10.1007/s10530-011-9963-4

Jones KE, Patel NG, Levy MA et al (2008) Global trends in emerging infectious diseases. Nature 451:990–993. https://doi.org/10.1038/nature06536

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keith DA, Mahony M, Hines H et al (2014) Detecting extinction risk from climate change by IUCN red list criteria. Conserv Biol 28:810–819. https://doi.org/10.1111/cobi.12234

Article  PubMed  Google Scholar 

Klepsatel P, Girish TN, Dircksen H, Gáliková M (2019) Re

留言 (0)

沒有登入
gif