Chemistry Matters: High Leaf Litter Consumption Does Not Represent a Direct Increase in Shredders’ Biomass

Abelho M (2001) From litterfall to breakdown in streams: a review. Sci World J 1:656–680. https://doi.org/10.1100/tsw.2001.103

Ardón M, Pringle CM (2008) Do secondary compounds inhibit microbial- and insect-mediated leaf breakdown in a tropical rainforest stream, Costa Rica? Oecologia 155:311–323. https://doi.org/10.1007/s00442-007-0913-x

Bambi P, Rezende RS, Feio MJ et al (2017) Temporal and spatial patterns in inputs and stock of organic matter in savannah streams of central Brazil. Ecosystem 20:757–768. https://doi.org/10.1007/s10021-016-0058-z

Article  Google Scholar 

Bärlocher F, Graça MAS (2005) Total phenolics. In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to Study Litter Decomposition: A Practical Guide. Springer, Netherlands, Dordrecht, pp 97–100

Chapter  Google Scholar 

Barreto GG, Hepp LU, Rezende RS, Goncalves JF Jr, Moretti MS, Moretto Y, Loureiro RC, Restello RM, Santos AM (2023) The cooler the better: increased aquatic hyphomycete diversity in subtropical streams along a neotropical latitudinal gradient. Fungal Ecol 62:101223. https://doi.org/10.1016/j.funeco.2022.101223

Bastian M, Boyero L, Jackes BR, Pearson RG (2007) Leaf litter diversity and shredder preferences in an Australian tropical rain-forest stream. J Trop Ecol 23:219–229

Article  Google Scholar 

Becker B, Moretti MS, Callisto M (2009) Length–dry mass relationships for a typical shredder in Brazilian streams (Trichoptera: Calamoceratidae). Aquat Insects 31:227–234. https://doi.org/10.1080/01650420902787549

Biasi C, Graça MAS, Santos S, Ferreira V (2017) Nutrient enrichment in water more than in leaves affects aquatic microbial litter processing. Oecologia 184:555–568. https://doi.org/10.1007/s00442-017-3869-5

Article  PubMed  Google Scholar 

Biasi C, Cogo GB, Hepp LU, Santos S (2019) Shredders prefer soft and fungal-conditioned leaves, regardless of their initial chemical traits. Iheringia Sér Zool 109:1–7. https://doi.org/10.1590/1678-4766e2019004

Boyero L, Pearson RG (2006) Intraspecific interference in a tropical stream shredder guild. Mar Freshw Res 57:201–206. https://doi.org/10.1071/MF05052

Article  Google Scholar 

Boyero L, Pearson RG, Hui C et al (2016) Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. Proc Biol Sci 283:1829. https://doi.org/10.1098/rspb.2015.2664

Cogo GB, Biasi C, Santos S (2018) Selection of food items by the omnivorous freshwater crustacean Aegla longirostri (Decapoda, Aeglidae). Fundam Appl Limnol 192:43–51. https://doi.org/10.1127/fal/2018/1158

Article  Google Scholar 

Crawley MJ (2007a) Statistical modelling. In: The R Book. John Wiley & Sons Ltd, England. pp 368–386.

Crawley MJ (2007b) Generalized linear models. In: The R Book. John Wiley & Sons, Ltd, England, pp 511–526

Ferreira WR, Renan RS, Martins RT, Gonçalves JF Jr, Hamada N, Callisto M (2023) Effects of predation risk on invertebrate leaf-litter shredders in headwater streams in three Brazilian biomes. Aquat Sci 85:28. https://doi.org/10.1007/s00027-022-00927-7

Fiori LF, de Cionek VM, Sacramento PA, Benedito E (2016) Dynamics of leaf fall from riparian vegetation and the accumulation in benthic stock in neotropical streams. Rev Árvore 40:89–96. https://doi.org/10.1590/0100-67622016000100010

Firmino VC, Keppler RLF, Gomes ES et al (2022) Effects of inter- and intraspecific competition and food availability on shredder invertebrates from an Amazonian stream. Aquat Sci 84:39. https://doi.org/10.1007/s00027-022-00874-3

Article  Google Scholar 

Gomes PP, Medeiros AO, Gonçalves Júnior JF (2016) The replacement of native plants by exotic species may affect the colonization and reproduction of aquatic hyphomycetes. Limnologica 59:124–130. https://doi.org/10.1016/j.limno.2016.05.005

Article  CAS  Google Scholar 

Graça MAS (2001) The role of invertebrates on leaf litter decomposition in streams - a review. Int Rev Hydrobiol 86:383–393. https://doi.org/10.1002/1522-2632(200107)86:4/5%3c383::AID-IROH383%3e3.0.CO;2-D

Article  Google Scholar 

Graça MAS, Ferreira V, Canhoto C et al (2015) A conceptual model of litter breakdown in low order streams. Int Rev Hydrobiol 100:1–12. https://doi.org/10.1002/iroh.201401757

Article  CAS  Google Scholar 

Graça MAS, González JM (2020) Shredder feeding and growth rates. In: F. Bärlocher et al. (eds.), Methods to Study Litter Decomposition, Springer Nature, Switzerland. Chapter 51 pp. 465–473. https://doi.org/10.1007/978-3-030-30515-4_51

Holzenthal RW, Calor AR (2017) Catalog of the Neotropical Trichoptera (Caddisflies). ZooKeys 2017:1–566. https://doi.org/10.3897/zookeys.654.9516

Article  Google Scholar 

Leite GFM, Silva FTC, Navarro FKSP et al (2016) Leaf litter input and electrical conductivity may change density of Phylloicus sp (Trichoptera: Calamoceratidae) in a Brazilian savannah stream. Acta Limnol Bras 28:00. https://doi.org/10.1590/s2179-975x1516

Martínez A, Monroy S, Pérez J et al (2016) In-stream litter decomposition along an altitudinal gradient: does substrate quality matter? Hydrobiologia 766:17–28. https://doi.org/10.1007/s10750-015-2432-9

Article  Google Scholar 

Martins RT, Melo AS, Gonçalves JF, Hamada N (2014) Estimation of dry mass of caddisflies Phylloicus elektoros (Trichoptera: Calamoceratidae) in a Central Amazon stream. Zoologia 31:337–342. https://doi.org/10.1590/S1984-46702014000400005

Article  Google Scholar 

Martins RT, Rezende RS, Gonçalves Júnior JF et al (2017) Effects of increasing temperature and CO2 on quality of litter, shredders, and microorganisms in Amazonian aquatic systems. PLoS ONE 12:1–15. https://doi.org/10.1371/journal.pone.0188791

Article  CAS  Google Scholar 

Martins RT, Soares KM, Hamada N (2021) Immature life cycle of laboratory-reared Phylloicus elektoros and Phylloicus amazonas (Trichoptera: Calamoceratidae) from a central Amazonian stream. Acta Amaz 51:67–70. https://doi.org/10.1590/1809-4392202003861

Article  Google Scholar 

Meyer E (1989) The relationship between body length parameters and dry mass in running water invertebrates. Arch Hydrobiol 68:191–203. https://doi.org/10.1127/archiv-hydrobiol/117/1989/191

Article  Google Scholar 

Moretti MS, Loyola RD, Becker B, Callisto M (2009) Leaf abundance and phenolic concentrations codetermine the selection of case-building materials by Phylloicus sp. (Trichoptera, Calamoceratidae). Hydrobiologia 630:199–206. https://doi.org/10.1007/s10750-009-9792-y

Article  CAS  Google Scholar 

Navarro FKSP (2020) Effects of microbial conditioning and temperature on the leaf-litter shredding activity of Phylloicus sp. Acta Sci Biol Sci 42:1. https://doi.org/10.4025/actascibiolsci.v42i1.52919

Navarro FKSP, Gonçalves Júnior JF (2017) Efeito do estágio de decomposição foliar e temperatura da água sobre a atividade de fragmentação de uma espécie de invertebrado fragmentador em ecossistemas lóticos. Iheringia Ser Zool 107. https://doi.org/10.1590/1678-4766e2017017

Norwood JC, Stewart KW (2002) Life history and case-building behavior of Phylloicus ornatus (Trichoptera: Calamoceratidae) in two spring-fed streams in Texas. Ann Entomol Soc Am 95:44–56. https://doi.org/10.1603/0013-8746(2002)095[0044:lhacbb]2.0.co;2

Article  Google Scholar 

Paine RT, Vadas RL (1969) Calorific values of benthic marine algae and their postulated relation to invertebrate food preference. Mar Biol 4:79–86. https://doi.org/10.1007/BF00347036

Article  Google Scholar 

Prather AL (2003) Revision of the Neotropical caddisfly genus Phylloicus (Trichoptera: Calamoceratidae). Zootaxa 275:1–214

Article  Google Scholar 

Reis DF, Machado MMD, Coutinho NP et al (2018) Feeding preference of the shredder Phylloicus sp. for plant leaves of Chrysophyllum oliviforme or Miconia chartacea after conditioning in streams from different biomes. Braz J Biol 79:22–28. https://doi.org/10.1590/1519-6984.170644

Article  PubMed  Google Scholar 

Reyes-Torres LJ, Ramírez A (2018) Life history and phenology of Phylloicus pulchrus (Trichoptera: Calamoceratidae) in a tropical rainforest stream of Puerto Rico. Rev Biol Trop 66:814–825. https://doi.org/10.15517/rbt.v66i2.33411

Rezende RS, Gonçalves JF Jr, Petrucio MM (2010) Leaf breakdown and invertebrate colonization of Eucalyptus grandis (Myrtaceae) and Hirtella glandulosa (Chrysobalanaceae) in two Neotropical lakes. Acta Limnol Bras 22:23–34. https://doi.org/10.4322/actalb.02201004

Article  Google Scholar 

Rezende RS, Santos AM, Henke-Oliveira C, Gonçalves JF (2014) Effects of spatial and environmental factors on benthic a macroinvertebrate community. Zoologia 31:426–434. https://doi.org/10.1590/S1984-46702014005000001

Article  Google Scholar 

Rezende RS, Leite GFM, De-Lima AKS et al (2015) Effects of density and predation risk on leaf litter processing by Phylloicus sp. Austral Ecol 40:693–700. https://doi.org/10.1111/aec.12236

Article  Google Scholar 

Rezende RS, Santos AM, Medeiros AO, Gonçalves JF (2017) Temporal leaf litter breakdown in a tropical riparian forest with an open canopy. Limnetica 36:445–459

Google Scholar 

Rezende RS, Leite GFM, Ramos K et al (2018) Effects of litter size and quality on processing by decomposers in a tropical savannah stream. Biotropica 50:578–585. https://doi.org/10.1111/btp.12547

Article  Google Scholar 

Rezende RS, Bernardi JP, Gomes ES et al (2021a) Effects of Phylloicus case removal on consumption of leaf litter from two Neotropical biomes (Amazon rainforest and Cerrado savanna). Limnology 22:35–42. https://doi.org/10.1007/s10201-020-00628-w

Article  CAS  Google Scholar 

Rezende RS, Cararo ER, Bernardi JP et al (2021) Land cover affects the breakdown of Pinus elliottii needles litter by microorganisms in soil and stream systems of subtropical riparian zones. Limnologica 90:125905. https://doi.org/10.1016/j.limno.2021.125905

Article  CAS  Google Scholar 

Rezende RS, Albuquerque CQ, Hirota ASV, et al (2019) Post-fire consequences for leaf breakdown in a tropical stream. Acta Limnol Bras 31. https://doi.org/10.1590/S2179-975X4118

Rincón J, Martínez I (2006) Food quality and feeding preferences of Phylloicus sp. (Trichoptera:Calamoceratidae). J N Am Benthol Soc 25:209–215. https://doi.org/10.1899/0887-3593(2006)25[209:fqafpo]2.0.co;2

Article  Google Scholar 

Saltarelli WA, Dodds WK, Tromboni F et al (2018) Variation of stream metabolism along a tropical environmental gradient. J Limnol 77:359–371. https://doi.org/10.4081/jlimnol.2018.1717

Seena S, Bärlocher F, Sobral O et al (2019) Science of the total environment biodiversity of leaf litter fungi in streams along a latitudinal gradient. Sci Total Environ 661:306–315. https://doi.org/10.1016/j.scitotenv.2019.01.122

Article  CAS  PubMed  Google Scholar 

Sena G, Ferreira V, Rezende RS, Gonçalves Júnior JF (2021) Nutrient enrichment does not affect diet selection by a tropical shredder species in a mesocosm experiment. Limnologica 125883. https://doi.org/10.1016/j.limno.2021.125883

Silva DJDA, Valduga AT, Molozzi J et al (2018) Leaching of carbon from native and non-native leaf litter of subtropical riparian forests. J Limnol 77:247–254. https://doi.org/10.4081/jlimnol.2018.1662

Article  Google Scholar 

Tank JL, Rosi-Marshall EJ, Griffiths NA et al (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J N Am Benthol Soc 29:118–146. https://doi.org/10.1899/08-170.1

Article  Google Scholar 

Tiwari R, Rana CS (2015) Plant secondary metabolites: a review. Int J Eng Res Gen Sci 3:661–670

Wallace JB, Webster JR (1996) The role of macroinvertebrates in stream ecosystem function. Annu Rev Entomol 41:115–139. https://doi.org/10.1146/annurev.en.41.010196.000555

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif