Celastrol-loaded biomimetic nanodrug ameliorates APAP-induced liver injury through modulating macrophage polarization

Andrade RJ, Chalasani N, Bjornsson ES, Suzuki A, Kullak-Ublick GA, Watkins PB, Devarbhavi H, Merz M, Lucena MI, Kaplowitz N et al (2019) Drug-induced liver injury. Nat Rev Dis Primers 5:58. https://doi.org/10.1038/s41572-019-0105-0

Article  PubMed  Google Scholar 

Garcia-Cortes M, Robles-Diaz M, Stephens C, Ortega-Alonso A, Lucena MI, Andrade RJ (2020) Drug induced liver injury: an update. Arch Toxicol 94:3381–3407. https://doi.org/10.1007/s00204-020-02885-1

Article  CAS  PubMed  Google Scholar 

Zheng J, Yuan Q, Zhou C, Huang W, Yu X (2021) Mitochondrial stress response in drug-induced liver injury. Mol Biol Rep 48:6949–6958. https://doi.org/10.1007/s11033-021-06674-6

Article  CAS  PubMed  Google Scholar 

Widjaja AA, Dong J, Adami E, Viswanathan S, Ng B, Pakkiri LS, Cook SA (2021) Redefining IL11 as a regeneration-limiting hepatotoxin and therapeutic target in acetaminophen-induced liver injury. Sci Transl Med 13:eaba8146. https://doi.org/10.1126/scitranslmed.aba8146

Du Z, Ma Z, Lai S, Ding Q, Hu Z, Yang W, Qian Q, Zhu, Dou X, Li S (2022) Atractylenolide I ameliorates acetaminophen-induced acute liver injury via the TLR4/MAPKs/NF-kappaB signaling pathways. Front Pharmacol 13:797499. https://doi.org/10.3389/fphar.2022.797499

Gong L, Liao L, Dai X, Xue X, Peng C, Li Y (2021) The dual role of immune response in acetaminophen hepatotoxicity: implication for immune pharmacological targets. Toxicol Lett 351:37–52. https://doi.org/10.1016/j.toxlet.2021.08.009

Article  CAS  PubMed  Google Scholar 

Wang W, Liu H, Liu T, Yang H, He F (2022) Insights into the role of macrophage polarization in the pathogenesis of osteoporosis. Oxid Med Cell Longev 2022:2485959. https://doi.org/10.1155/2022/2485959

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y (2021) Macrophage polarization and its role in liver disease. Front Immunol 12:803037. https://doi.org/10.3389/fimmu.2021.803037

Marques PE, Oliveira AG, Pereira RV, David BA, Gomides LF, Saraiva AM, Pires DA, Novaes JT, Patricio DO, Cisalpino D et al (2015) Hepatic DNA deposition drives drug-induced liver injury and inflammation in mice. Hepatology 61:348–360. https://doi.org/10.1002/hep.27216

Article  CAS  PubMed  Google Scholar 

Woolbright BL, Jaeschke H (2018) Mechanisms of inflammatory liver injury and drug-induced hepatotoxicity. Curr Pharmacol Rep 4:346–357. https://doi.org/10.1007/s40495-018-0147-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang C, Feng J, Du J, Zhuo Z, Yang S, Zhang W, Wang W, Zhang S, Iwakura Y, Meng G et al (2018) Macrophage-derived IL-1alpha promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell Mol Immunol 15:973–982. https://doi.org/10.1038/cmi.2017.22

Article  CAS  PubMed  Google Scholar 

Song B, Zhang C, Hu W, Guo C, Xia Z, Hu W, Qin M, Jiang W, Lv J, Xu D et al (2021) Nano-designed carbon monoxide donor SMA/CORM2 exhibits protective effect against acetaminophen induced liver injury through macrophage reprograming and promoting liver regeneration. J Control Release 331:350–363. https://doi.org/10.1016/j.jconrel.2021.01.025

Article  CAS  PubMed  Google Scholar 

Tsuji Y, Kuramochi M, Golbar HM, Izawa T, Kuwamura M, Yamate J (2020) Acetaminophen-induced rat hepatotoxicity based on M1/M2-macrophage polarization, in possible relation to damage-associated molecular patterns and autophagy. Int J Mol Sci 21. https://doi.org/10.3390/ijms21238998

Yang N, Li M, Wu L, Song Y, Yu S, Wan Y, Cheng W, Yang B, Mou X, Yu H et al (2023) Peptide-anchored neutrophil membrane-coated biomimetic nanodrug for targeted treatment of rheumatoid arthritis. J Nanobiotechnology 21:13. https://doi.org/10.1186/s12951-023-01773-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang G, Cheng W, Yang N, Yang B, Yu S, Zheng J, Li M, Fu Y, Li X, Song Y et al (2023) Peptide-decorated artificial erythrocyte microvesicles endowed with lymph node targeting function for drug delivery. Advanced Therapeutics. https://doi.org/10.1002/adtp.202200236

Article  PubMed  Google Scholar 

Fang G, Tang B (2020) Current advances in the nano-delivery of celastrol for treating inflammation-associated diseases. J Mater Chem B 8:10954–10965. https://doi.org/10.1039/d0tb01939a

Article  CAS  PubMed  Google Scholar 

Luo D, Guo YM, Cheng YY, Zhao J, Wang Y, Rong JH (2017) Natural product celastrol suppressed macrophage M1 polarization against inflammation in diet-induced obese mice via regulating Nrf2/HO-1, MAP kinase and NF-κB pathways. Aging 9:2069. https://doi.org/10.18632/aging.101302

Yuan K, Huang G, Zhang S, Zhu Q, Yu R, Sheng H, Luo G, Xu A (2017) Celastrol alleviates arthritis by modulating the inflammatory activities of neutrophils. Journal of Traditional Chinese Medical Sciences 4:50–58. https://doi.org/10.1016/j.jtcms.2017.05.007

Article  Google Scholar 

Jannuzzi AT, Kara M, Alpertunga B (2018) Celastrol ameliorates acetaminophen-induced oxidative stress and cytotoxicity in HepG2 cells. Hum Exp Toxicol 37:742–751. https://doi.org/10.1177/0960327117734622

Article  CAS  PubMed  Google Scholar 

Clemente-Casares X, Tsai S, Yang Y, Santamaria P (2011) Peptide-MHC-based nanovaccines for the treatment of autoimmunity: a “one size fits all” approach? J Mol Med (Berl) 89:733–742. https://doi.org/10.1007/s00109-011-0757-z

Chen J, Tan Q, Yang Z, Jin Y (2022) Engineered extracellular vesicles: potentials in cancer combination therapy. J Nanobiotechnology 20:132. https://doi.org/10.1186/s12951-022-01330-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan J, Yu J, Wang C, Gu Z (2017) Red blood cells for drug delivery. Small Methods 1:1700270. https://doi.org/10.1002/smtd.201700270

Article  CAS  Google Scholar 

Han X, Wang C, Liu Z (2018) Red blood cells as smart delivery systems. Bioconjug Chem 29:852–860. https://doi.org/10.1021/acs.bioconjchem.7b00758

Article  CAS  PubMed  Google Scholar 

Zhang G, Huang X, Xiu H, Sun Y, Chen J, Cheng G, Song Z, Peng Y, Shen Y, Wang J et al (2020) Extracellular vesicles: natural liver-accumulating drug delivery vehicles for the treatment of liver diseases. J Extracell Vesicles 10:e12030. https://doi.org/10.1002/jev2.12030

Singh P, Bodycomb J, Travers B, Tatarkiewicz K, Travers S, Matyas GR, Beck Z (2019) Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology. Int J Pharm 566:680–686. https://doi.org/10.1016/j.ijpharm.2019.06.013

Article  CAS  PubMed  Google Scholar 

Zhu H, Tong S, Yan C, Zhou A, Wang M, Li C (2022) Triptolide attenuates LPS-induced activation of RAW 264.7 macrophages by inducing M1-to-M2 repolarization via the mTOR/STAT3 signaling. Immunopharmacol Immunotoxicol 44:894–901. https://doi.org/10.1080/08923973.2022.2093738

Article  CAS  PubMed  Google Scholar 

Hou H, Adzika GK, Wu Q, Ma T, Ma Y, Geng J, Shi M, Fu L, Rizvi R, Gong Z et al (2021) Estrogen attenuates chronic stress-induced cardiomyopathy by adaptively regulating macrophage polarizations via beta2-adrenergic receptor modulation. Front Cell Dev Biol 9:737003. https://doi.org/10.3389/fcell.2021.737003

Jaeschke H (2015) Acetaminophen: dose-dependent drug hepatotoxicity and acute liver failure in patients. Dig Dis 33:464–471. https://doi.org/10.1159/000374090

Article  PubMed  Google Scholar 

Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM, Lima BH, Lopes GA, Russo RC, Avila TV, Melgaco JG et al (2012) Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 56:1971–1982. https://doi.org/10.1002/hep.25801

Liu Y, Li J (2023) Self-assembling nanoarchitectonics of size-controllable celastrol nanoparticles for efficient cancer chemotherapy with reduced systemic toxicity. J Colloid Interface Sci 636:216–222. https://doi.org/10.1016/j.jcis.2022.12.162

Article  CAS  PubMed  Google Scholar 

Woolbright BL, Jaeschke H (2017) Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure. J Hepatol 66:836–848. https://doi.org/10.1016/j.jhep.2016.11.017

Article  CAS  PubMed  Google Scholar 

Krenkel O, Mossanen JC, Tacke F (2014) Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surg Nutr 3:331–343. https://doi.org/10.3978/j.issn.2304-3881.2014.11.01

Article  PubMed  PubMed Central  Google Scholar 

Monti-Rocha R, Cramer A, Gaio Leite P, Antunes MM, Pereira RVS, Barroso A, Queiroz-Junior CM, David BA, Teixeira MM, Menezes GB et al (2018) SOCS2 is critical for the balancing of immune response and oxidate stress protecting against acetaminophen-induced acute liver injury. Front Immunol 9:3134. https://doi.org/10.3389/fimmu.2018.03134

Article  CAS  PubMed  Google Scholar 

Jaeschke H, Ramachandran A (2020) Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food Chem Toxicol 138:111240. https://doi.org/10.1016/j.fct.2020.111240

Ma PY, Geng WL, Ji HY, Yue BW, Liu C, Wang S, Jiang ZB, Chen J, Wu XL (2022) Native endophytes of Tripterygium wilfordii-mediated biotransformation reduces toxicity of celastrol. Front Microbiol 13:810565. https://doi.org/10.3389/fmicb.2022.810565

Chan Y, Ng SW, Chellappan DK, Madheswaran T, Zeeshan F, Kumar P, Pillay V, Gupta G, Wadhwa R, Mehta M et al (2020) Celastrol-loaded liquid crystalline nanoparticles as an anti-inflammatory intervention for the treatment of asthma. Int J Polym Mater Polym Biomater 70:754–763. https://doi.org/10.1080/00914037.2020.1765350

Article  CAS  Google Scholar 

Allen SD, Liu YG, Kim T, Bobbala S, Yi S, Zhang X, Choi J, Scott EA (2019) Celastrol-loaded PEG-b-PPS nanocarriers as an anti-inflammatory treatment for atherosclerosis. Biomater Sci 7:657–668. https://doi.org/10.1039/c8bm01224e

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin T, Wu D, Liu XM, Xu JT, Ma BJ, Ji Y, Jin YY, Wu SY, Wu T, Ma K (2020) Intra-articular delivery of celastrol by hollow mesoporous silica nanoparticles for pH-sensitive anti-inflammatory therapy against knee osteoarthritis. J Nanobiotechnology 18:94. https://doi.org/10.1186/s12951-020-00651-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dash P, Piras AM, Dash M (2020) Cell membrane coated nanocarriers-an efficient biomimetic platform for targeted therapy. J Control Release 327:546–570. https://doi.org/10.1016/j.jconrel.2020.09.012

Article  CAS  PubMed  Google Scholar 

Yao Q, Yang G, Wang H, Liu J, Zheng J, Lv B, Yang M, Yang Y, Gao C, Guo Y (2021) Aging erythrocyte membranes as biomimetic nanometer carriers of liver-targeting chromium poisoning treatment. Drug Deliv 28:1455–1465. https://doi.org/10.1080/10717544.2021.1949075

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaeschke H, Ramachandran A (2022) Targeting the sterile inflammatory response during acetaminophen hepatotoxicity with natural products. Toxicol Lett 355:170–171. https://doi.org/10.1016/j.toxlet.2021.11.006

Nguyen NT, Umbaugh DS, Sanchez-Guerrero G, Ramachandran A, Jaeschke H (2022) Kupffer cells regulate liver recovery through induction of chemokine receptor CXCR2 on hepatocytes after acetaminophen overdose in mice. Arch Toxicol 96:305–320. https://doi.org/10.1007/s00204-021-03183-0

Article  CAS  PubMed  Google Scholar 

An L, Li Z, Shi L, Wang L, Wang Y, Jin L, Shuai X, Li J (2020) Inflammation-targeted celastrol nanodrug attenuates collagen-induced arthritis through NF-kappaB and Notch1 pathways. Nano Lett 20:7728–7736. https://doi.org/10.1021/acs.nanolett.0c03279

Article 

留言 (0)

沒有登入
gif