In silico enhancer mining reveals SNS-032 and EHMT2 inhibitors as therapeutic candidates in high-grade serous ovarian cancer

McGuire AL, Gabriel S, Tishkoff SA, Wonkam A, Chakravarti A, Furlong EEM, et al. The road ahead in genetics and genomics. Nat Rev Genet. 2020;21:581–96. https://doi.org/10.1038/s41576-020-0272-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brogi S, Ramalho TC, Kuca K, Medina-Franco JL, Valko M. Editorial: in silico methods for drug design and discovery. Front Chem. 2020;8:612. https://doi.org/10.3389/fchem.2020.00612

Article  PubMed  PubMed Central  Google Scholar 

Brunak S, Bjerre Collin C, Eva Ó Cathaoir K, Golebiewski M, Kirschner M, Kockum I, et al. Towards standardization guidelines for in silico approaches in personalized medicine. J Integr Bioinforma. 2020;17. https://doi.org/10.1515/JIB-2020-0006.

Zhang Y, Qazi S, Raza K. Differential expression analysis in ovarian cancer: a functional genomics and systems biology approach. Saudi J Biol Sci. 2021;28:4069–81. https://doi.org/10.1016/J.SJBS.2021.04.022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu W, Zhang R, Jiang H, Zhang H, Luo C. Computer-aided drug design in epigenetics. Front Chem. 2018;6:57. https://doi.org/10.3389/fchem.2018.00057

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qazi S, Raza K. In silico approach to understand epigenetics of POTEE in ovarian cancer. J Integr Bioinform. 2021;18:20210028

Article  PubMed  PubMed Central  Google Scholar 

Dawson MA. The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science. 2017;355:1147–52. https://doi.org/10.1126/science.aam7304

Article  CAS  PubMed  Google Scholar 

Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46. https://doi.org/10.1158/2159-8290.CD-21-1059

Article  CAS  PubMed  Google Scholar 

Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet. 2006;7:29–59. https://doi.org/10.1146/annurev.genom.7.080505.115623

Article  CAS  PubMed  Google Scholar 

Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA. 2010;107:21931–6. https://doi.org/10.1073/pnas.1016071107

Article  PubMed  PubMed Central  Google Scholar 

Okabe A, Kaneda A. Transcriptional dysregulation by aberrant enhancer activation and rewiring in cancer. Cancer Sci. 2021;112:2081. https://doi.org/10.1111/CAS.14884

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corona RI, Seo JH, Lin X, Hazelett DJ, Reddy J, Fonseca MAS, et al. Non-coding somatic mutations converge on the PAX8 pathway in ovarian cancer. Nat Commun. 2020;11:1–11. https://doi.org/10.1038/s41467-020-15951-0

Article  CAS  Google Scholar 

Lawrenson K, Fonseca MAS, Liu AY, Freedman ML, Gayther SA, Noushmehr H. A study of high-grade serous ovarian cancer origins implicates the SOX18 transcription factor in tumor development. Cell Rep. 2019;29:3726–35.

Ravindran F, Choudhary B. Ovarian cancer: molecular classification and targeted therapy. Ovarian Cancer Updat Tumour Biol Ther. 2021. https://doi.org/10.5772/intechopen.95967.

Chandra A, Pius C, Nabeel M, Nair M, Vishwanatha JK, Ahmad S, et al. Ovarian cancer: current status and strategies for improving therapeutic outcomes. Cancer Med. 2019;8:7018–31. https://doi.org/10.1002/cam4.2560

Article  PubMed  PubMed Central  Google Scholar 

Marchetti C, De Felice F, Romito A, Iacobelli V, Sassu CM, Corrado G, et al. Chemotherapy resistance in epithelial ovarian cancer: mechanisms and emerging treatments. Semin Cancer Biol. 2021;77:144–66. https://doi.org/10.1016/j.semcancer.2021.08.011

Article  CAS  PubMed  Google Scholar 

Horikawa N, Abiko K, Matsumura N, Baba T, Hamanishi J, Yamaguchi K, et al. Anti-VEGF therapy resistance in ovarian cancer is caused by GM-CSF-induced myeloid-derived suppressor cell recruitment. Br J Cancer. 2020;122:778–88. https://doi.org/10.1038/s41416-019-0725-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dias MP, Moser SC, Ganesan S, Jonkers J. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol. 2021;18:773–91. https://doi.org/10.1038/s41571-021-00532-x

Article  PubMed  Google Scholar 

Roopra A. MAGIC: A tool for predicting transcription factors and cofactors driving gene sets using ENCODE data. PLoS Comput Biol. 2020;16:e1007800. https://doi.org/10.1371/journal.pcbi.1007800

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szklarczyk D, Santos A, Von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016;44:D380–4. https://doi.org/10.1093/nar/gkv1277

Article  CAS  PubMed  Google Scholar 

Coetzee SG, Shen HC, Hazelett DJ, Lawrenson K, Kuchenbaecker K, Tyrer J, et al. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci. Hum Mol Genet. 2015;24:3595–607. https://doi.org/10.1093/HMG/DDV101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin X, Spindler TJ, de Souza Fonseca MA, Corona RI, Seo JH, Dezem FS, et al. Super-enhancer-associated LncRNA UCA1 interacts directly with AMOT to activate YAP target genes in epithelial ovarian cancer. IScience. 2019;17:242–55. https://doi.org/10.1016/j.isci.2019.06.025

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones MR, Peng PC, Coetzee SG, Tyrer J, Reyes ALP, Corona RI, et al. Ovarian cancer risk variants are enriched in histotype-specific enhancers and disrupt transcription factor binding sites. Am J Hum Genet. 2020;107:622–35. https://doi.org/10.1016/j.ajhg.2020.08.021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dobin A, Gingeras TR, Spring C, Flores R, Sampson J, Knight R, et al. Mapping RNA-seq with STAR. Curr Protoc Bioinforma. 2016;51:586–97. https://doi.org/10.1002/0471250953.bi1114s51.Mapping

Article  Google Scholar 

Kharchenko PV, Tolstorukov MY, Park PJ. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol. 2008;26:1351–9. https://doi.org/10.1038/nbt.1508

Article  CAS  PubMed  PubMed Central  Google Scholar 

Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. 2012:1813–31. https://doi.org/10.1101/gr.136184.111.

Carroll TS, Liang Z, Salama R, Stark R, de Santiago I. Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data. Front Genet. 2014;5:1–11. https://doi.org/10.3389/fgene.2014.00075

Article  CAS  Google Scholar 

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:1–9. https://doi.org/10.1186/GB-2008-9-9-R137

Article  Google Scholar 

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. rchestrating high-throughput genomic analysis with ioconductor. Nat Methods. 2015;12:115–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database. 2017;2017. https://doi.org/10.1093/database/bax028.

Kolde R. pheatmap: Pretty Heatmaps. R package version 1.0.12 (2019). https://CRAN.R-project.org/package=pheatmap

Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature. 2012;481:389–93. https://doi.org/10.1038/nature10730

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag New York; 2016.

Hahne F, Ivanek R. Visualizing genomic data using Gviz and bioconductor. Methods Mol Biol. 2016;1418:335–51. https://doi.org/10.1007/978-1-4939-3578-9_16

Article  PubMed  Google Scholar 

Gehlenborg N. UpSetR: a more scalable alternative to Venn and Euler diagrams for visualizing intersecting sets. R package version 1.4.0 (2019). https://CRAN.R-project.org/package=UpSetR

Inkscape Project. Inkscape [Internet]. 2020. Available from https://inkscape.org.

Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47:W199–205. https://doi.org/10.1093/nar/gkz401

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joshi NA, Fass JN. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. Available at https://github.com/najoshi/sickle

Beauparlant CJ, Lemacon A, Fournier E, Droit A. ENCODExplorer: a compilation of ENCODE metadata. R package version 2.12.1 (2019). https://rdrr.io/bioc/ENCODExplorer/

Grant CE, Bailey TL, Noble WS. FIMO: Scanning for occurrences of a given motif. Bioinformatics. 2011;27:1017–8. https://doi.org/10.1093/bioinformatics/btr064

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nettling M, Treutler H, Grau J, Keilwagen J, Posch S, Grosse I. DiffLogo: a comparative visualization of sequence motifs. BMC Bioinforma. 2015;16:1–9. https://doi.org/10.1186/S12859-015-0767-X

Article  Google Scholar 

Bateman A, Martin MJ, Orchard S, Magrane M, Agivetova R, Ahmad S, et al. UniProt: the universal protein knowled

留言 (0)

沒有登入
gif