Structural basis for RNA slicing by a plant Argonaute

Singh, A. et al. Plant small RNAs: advancement in the understanding of biogenesis and role in plant development. Planta 248, 545–558 (2018).

Article  CAS  PubMed  Google Scholar 

Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iwakawa, H. O. & Tomari, Y. Life of RISC: formation, action, and degradation of RNA-induced silencing complex. Mol. Cell 82, 30–43 (2022).

Article  CAS  PubMed  Google Scholar 

Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

Article  CAS  PubMed  Google Scholar 

Hu, B. et al. Therapeutic siRNA: state of the art. Signal Transduct. Target Ther. 5, 101 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002).

Article  CAS  PubMed  Google Scholar 

Allen, E., Xie, Z., Gustafson, A. M. & Carrington, J. C. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221 (2005).

Article  CAS  PubMed  Google Scholar 

Axtell, M. J., Jan, C., Rajagopalan, R. & Bartel, D. P. A two-hit trigger for siRNA biogenesis in plants. Cell 127, 565–577 (2006).

Article  CAS  PubMed  Google Scholar 

Creasey, K. M. et al. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 508, 411–415 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sheng, G. et al. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc. Natl Acad. Sci. USA 111, 652–657 (2014).

Article  CAS  PubMed  Google Scholar 

Wang, Y. et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754–761 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ober-Reynolds, B. et al. High-throughput biochemical profiling reveals functional adaptation of a bacterial Argonaute. Mol. Cell 82, 1329–1342 e1328 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y. et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921–926 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D. J. Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209–213 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wee, L. M., Flores-Jasso, C. F., Salomon, W. E. & Zamore, P. D. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151, 1055–1067 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becker, W. R. et al. High-throughput analysis reveals rules for target RNA binding and cleavage by AGO2. Mol. Cell https://doi.org/10.1016/j.molcel.2019.06.012 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Niaz, S. The AGO proteins: an overview. Biol. Chem. 399, 525–547 (2018).

Article  CAS  PubMed  Google Scholar 

Pourjafar-Dehkordi, D. & Zacharias, M. Binding-induced functional-domain motions in the Argonaute characterized by adaptive advanced sampling. PLoS Comput. Biol. 17, e1009625 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sheu-Gruttadauria, J., Xiao, Y., Gebert, L. F. & MacRae, I. J. Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. EMBO J. https://doi.org/10.15252/2Fembj.2018101153 (2019).

Sheu-Gruttadauria, J. et al. Structural basis for target-directed microRNA degradation. Mol. Cell https://doi.org/10.1016/j.molcel.2019.06.019 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Nakanishi, K., Weinberg, D. E., Bartel, D. P. & Patel, D. J. Structure of yeast Argonaute with guide RNA. Nature 486, 368–374 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schirle, N. T. & MacRae, I. J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakanishi, K. et al. Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Cell Rep. 3, 1893–1900 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park, M. S. et al. Human Argonaute3 has slicer activity. Nucleic Acids Res. 45, 11867–11877 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park, M. S. et al. Multidomain convergence of argonaute during RISC assembly correlates with the formation of internal water clusters. Mol. Cell 75, 725–740 e726 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faehnle, C. R., Elkayam, E., Haase, A. D., Hannon, G. J. & Joshua-Tor, L. The making of a slicer: activation of human Argonaute-1. Cell Rep. 3, 1901–1909 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nowotny, M., Gaidamakov, S. A., Crouch, R. J. & Yang, W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121, 1005–1016 (2005).

Article  CAS  PubMed  Google Scholar 

Schirle, N. T., Sheu-Gruttadauria, J. & MacRae, I. J. Structural basis for microRNA targeting. Science 346, 608–613 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

Article  CAS  PubMed  Google Scholar 

Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

Article  CAS  PubMed  Google Scholar 

Ameres, S. L., Martinez, J. & Schroeder, R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130, 101–112 (2007).

Article  CAS  PubMed  Google Scholar 

Reynolds, A. et al. Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330 (2004).

Article  CAS  PubMed  Google Scholar 

Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

Article  CAS  PubMed  Google Scholar 

Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife https://doi.org/10.7554/eLife.18722 (2016).

Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

Article  CAS  PubMed  Google Scholar 

Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

Article 

留言 (0)

沒有登入
gif