Catalytic enantioselective nucleophilic desymmetrization of phosphonate esters

Rodriguez, J. B. & Gallo-Rodriguez, C. The role of the phosphorus atom in drug design. ChemMedChem 14, 190–216 (2018).

Google Scholar 

Siegel, D. et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 531, 381–385 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Dutartre, M., Bayardon, J. & Jugé, S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem. Soc. Rev. 45, 5771–5794 (2016).

Article  CAS  PubMed  Google Scholar 

Zhou, J. et al. Recent advances in catalytic asymmetric synthesis of P-chiral phosphine oxides. Acta Chim. Sin. 78, 193–216 (2020).

Article  Google Scholar 

Liu, S. et al. First catalytic enantioselective synthesis of P-stereogenic phosphoramides via kinetic resolution promoted by a chiral bicyclic imidazole nucleophilic catalyst. Tetrahedron: Asymmetry 23, 329–332 (2012).

Article  CAS  Google Scholar 

Tamura, T. & Ryukoku, E. Asymmetric synthesis of organic phosphorus compounds. Japan patent JP 2003128688 A (2003).

Wang, L. et al. Organocatalytic enantioselective synthesis of P-stereogenic chiral oxazaphospholidines. Eur. J. Org. Chem. 2016, 2024–2028 (2016).

Article  CAS  Google Scholar 

Borissov, A. et al. Organocatalytic enantioselective desymmetrisation. Chem. Soc. Rev. 45, 5474–5540 (2016).

Article  CAS  PubMed  Google Scholar 

Núñez, M. G., Farley, A. J. M. & Dixon, D. J. Bifunctional iminophosphorane organocatalysts for enantioselective synthesis: application to the ketimine nitro-Mannich reaction. J. Am. Chem. Soc. 135, 16348–16351 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Farley, A. J. M., Sandford, C. & Dixon, D. J. Bifunctional iminophosphorane catalyzed enantioselective sulfa-Michael addition to unactivated α-substituted acrylate esters. J. Am. Chem. Soc. 137, 15992–15995 (2015).

Article  CAS  PubMed  Google Scholar 

Formica, M., Rozsar, D., Su, G., Farley, A. J. M. & Dixon, D. J. Bifunctional iminophosphorane superbase catalysis: applications in organic synthesis. Acc. Chem. Res. 53, 2235–2247 (2020).

Article  CAS  PubMed  Google Scholar 

Mehellou, Y., Rattan, H. S. & Balzarini, J. The ProTide prodrug technology: from the concept to the clinic. J. Med. Chem. 61, 2211–2226 (2018).

Article  CAS  PubMed  Google Scholar 

DiRocco, D. A. et al. A multifunctional catalyst that stereoselectively assembles prodrugs. Science 356, 426–430 (2017).

Article  CAS  PubMed  Google Scholar 

Knouse, K. W. et al. Unlocking P(V): Reagents for chiral phosphorothioate synthesis. Science 361, 1234–1238 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, Y. et al. P(V)-platform for oligonucleotide synthesis. Science 373, 1265–1270 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Juge, S., Stephan, M., Laffitte, J. A. & Genet, J. P. Efficient asymmetric synthesis of optically pure tertiary mono and diphosphine ligands. Tetrahedron Lett. 31, 6357–6360 (1990).

Article  CAS  Google Scholar 

Juge, S. & Genet, J. P. Asymmetric synthesis of phosphinates, phosphine oxides and phosphines by Michaelis Arbuzov rearrangement of chiral oxazaphospholidine. Tetrahedron Lett. 30, 2783–2786 (1989).

Article  CAS  Google Scholar 

Corey, E. J., Chen, Z. & Tanoury, G. J. A new and highly enantioselective synthetic route to P-chiral phosphines and diphosphines. J. Am. Chem. Soc. 115, 11000–11001 (1993).

Article  CAS  Google Scholar 

Han, Z. S. et al. Efficient asymmetric synthesis of P-chiral phosphine oxides via properly designed and activated benzoxazaphosphinine-2-oxide agents. J. Am. Chem. Soc. 135, 2474–2477 (2013).

Article  CAS  PubMed  Google Scholar 

Kuwabara, K., Maekawa, Y., Minoura, M., Maruyama, T. & Murai, T. Chemoselective and stereoselective alcoholysis of binaphthyl phosphonothioates: straightforward access to both stereoisomers of biologically relevant P-stereogenic phosphonothioates. J. Org. Chem. 85, 14446–14455 (2020).

Article  CAS  PubMed  Google Scholar 

Mondal, A., Thiel, N. O., Dorel, R. & Feringa, B. L. P-chirogenic phosphorus compounds by stereoselective Pd-catalysed arylation of phosphoramidites. Nat. Catal. 5, 10–19 (2021).

Article  Google Scholar 

Xu, D. et al. Enantiodivergent formation of C–P bonds: synthesis of P-chiral phosphines and methylphosphonate oligonucleotides. J. Am. Chem. Soc. 142, 5785–5792 (2020).

Article  CAS  PubMed  Google Scholar 

Beaud, R., Phipps, R. J. & Gaunt, M. J. Enantioselective Cu-catalyzed arylation of secondary phosphine oxides with diaryliodonium salts toward the synthesis of P-chiral phosphines. J. Am. Chem. Soc. 138, 13183–13186 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai, Q., Li, W., Li, Z. & Zhang, J. P-chiral phosphines enabled by palladium/Xiao-Phos-catalyzed asymmetric P–C cross-coupling of secondary phosphine oxides and aryl bromides. J. Am. Chem. Soc. 141, 20556–20564 (2019).

Article  CAS  PubMed  Google Scholar 

Liu, X., Zhang, Y.-Q., Han, X., Sun, S. & Zhang, Q. Ni-catalyzed asymmetric allylation of secondary phosphine oxides. J. Am. Chem. Soc. 141, 16584–16589 (2019).

Article  CAS  PubMed  Google Scholar 

Diesel, J. & Cramer, N. Generation of heteroatom stereocenters by enantioselective C–H functionalization. ACS Catal. 9, 9164–9177 (2019).

Article  CAS  Google Scholar 

Genov, G. R., Douthwaite, J. L., Lahdenperä, A. S. K., Gibson, D. C. & Phipps, R. J. Enantioselective remote C–H activation directed by a chiral cation. Science 367, 1246–1251 (2020).

Article  CAS  PubMed  Google Scholar 

Huang, Q.-H. et al. Access to P-stereogenic compounds via desymmetrizing enantioselective bromination. Chem. Sci. 68, 42–61 (2021).

Google Scholar 

Wiktelius, D., Johansson, M. J., Luthman, K. & Kann, N. A biocatalytic route to P-chirogenic compounds by lipase-catalyzed desymmetrization of a prochiral phosphine−borane. Org. Lett. 7, 4991–4994 (2005).

Article  CAS  PubMed  Google Scholar 

Toda, Y., Pink, M. & Johnston, J. N. Brønsted acid catalyzed phosphoramidic acid additions to alkenes: diastereo- and enantioselective halogenative cyclizations for the synthesis of C- and P-chiral phosphoramidates. J. Am. Chem. Soc. 136, 14734–14737 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harvey, J. S. et al. Enantioselective synthesis of P-stereogenic phosphinates and phosphine oxides by molybdenum-catalyzed asymmetric ring-closing metathesis. Angew. Chem. Int. Ed. 48, 762–766 (2009).

Article  CAS  Google Scholar 

Trost, B. M., Spohr, S. M., Rolka, A. B. & Kalnmals, C. A. Desymmetrization of phosphinic acids via Pd-catalyzed asymmetric allylic alkylation: rapid access to P-chiral phosphinates. J. Am. Chem. Soc. 141, 14098–14103 (2019).

Article  CAS  PubMed  Google Scholar 

Zhu, R.-Y., Chen, L., Hu, X.-S., Zhou, F. & Zhou, J. Enantioselective synthesis of P-chiral tertiary phosphine oxides with an ethynyl group via Cu(i)-catalyzed azide–alkyne cycloaddition. Chem. Sci. 11, 97–106 (2020).

Article  CAS  PubMed  Google Scholar 

Yang, G., Li, Y., Li, X. & Cheng, J.-P. Access to P-chiral phosphine oxides by enantioselective allylic alkylation of bisphenols. Chem. Sci. 10, 4322–4327 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng, Y., Guo, L. & Zi, W. Enantioselective and regioselective hydroetherification of alkynes by gold-catalyzed desymmetrization of prochiral phenols with P-stereogenic centers. Org. Lett. 20, 7039–7043 (2018).

Article  CAS  PubMed  Google Scholar 

Zhang, Y. et al. Asymmetric synthesis of P-stereogenic compounds via thulium(III)-catalyzed desymmetrization of dialkynylphosphine oxides. ACS Catal. 9, 4834–4840 (2019).

Article  CAS  Google Scholar 

Lemouzy, S., Giordano, L., Hérault, D. & Buono, G. Introducing chirality at phosphorus atoms: an update on the recent synthetic strategies for the preparation of optically pure P-stereogenic molecules. Eur. J. Org. Chem. 2020, 3351–3366 (2020).

Article  CAS  Google Scholar 

Forbes, K. C. & Jacobsen, E. N. Enantioselective hydrogen-bond-donor catalysis to access diverse stereogenic-at-P(V) compounds. Science 376, 1230–1236 (2022).

Article  CAS  PubMed  Google Scholar 

Wang, Y.-H. et al. Activating pronucleophiles with high pKa values: chiral organo‐superbases. Angew. Chem. Int. Ed. 59, 8004–8014 (2020).

Article  CAS  Google Scholar 

Greenhalgh, M. D., Qu, S., Slawin, A. M. Z. & Smith, A. D. Multiple roles of aryloxide leaving groups in enantioselective annulations employing α,β-unsaturated acyl ammonium catalysis. Chem. Sci. 9, 4909–4918 (2018).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif