Urolithin C reveals anti-NAFLD potential via AMPK-ferroptosis axis and modulating gut microbiota

Alisi A, Cianfarani S, Manco M, Agostoni C, Nobili V (2012) Non-alcoholic fatty liver disease and metabolic syndrome in adolescents: pathogenetic role of genetic background and intrauterine environment. Ann Med 44:29–40. https://doi.org/10.3109/07853890.2010.547869

Article  CAS  PubMed  Google Scholar 

Ayonrinde OT, Olynyk JK, Marsh JA, Beilin LJ, Mori TA, Oddy WH, Adams LA (2015) Childhood adiposity trajectories and risk of nonalcoholic fatty liver disease in adolescents. J Gastroenterol Hepatol 30:163–171. https://doi.org/10.1111/jgh.12666

Article  PubMed  Google Scholar 

Bayle M, Neasta J, Dall’Asta M, Gautheron G, Virsolvy A, Quignard JF, Youl E, Magous R, Guichou JF, Crozier A, Del Rio D, Cros G, Oiry C (2019) The ellagitannin metabolite urolithin C is a glucose-dependent regulator of insulin secretion through activation of L-type calcium channels. Br J Pharmacol 176:4065–78. https://doi.org/10.1111/bph.14821

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bedossa P (2014) Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology 60:565–575. https://doi.org/10.1002/hep.27173

Article  CAS  PubMed  Google Scholar 

Campbell P, Symonds A, Barritt AS (2021) Therapy for nonalcoholic fatty liver disease: current options and future directions. Clin Ther 43:500–17. https://doi.org/10.1016/j.clinthera.2021.01.021

Article  CAS  PubMed  Google Scholar 

Capelletti MM, Manceau H, Puy H, Peoc’h K (2020) Ferroptosis in liver diseases: an overview, Int J Mol Sci, 21. https://doi.org/10.3390/ijms21144908

Castillo V, Figueroa F, González-Pizarro K, Jopia P, and Ibacache-Quiroga C (2021) Probiotics and prebiotics as a strategy for non-alcoholic fatty liver disease, a narrative review, Foods, 10. https://doi.org/10.3390/foods10081719

Catalá A, Díaz M (2016) Editorial: impact of lipid peroxidation on the physiology and pathophysiology of cell membranes. Front Physiol 7:423. https://doi.org/10.3389/fphys.2016.00423

Article  PubMed  PubMed Central  Google Scholar 

Chung HS, Lee MJ, Hwang SY, Lee HJ, Yoo HJ, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Kim SM, Choi KM (2016) Circulating angiopoietin-like protein 8 (ANGPTL8) and ANGPTL3 concentrations in relation to anthropometric and metabolic profiles in Korean children: a prospective cohort study. Cardiovasc Diabetol 15:1. https://doi.org/10.1186/s12933-015-0324-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang YL, Chen H, Wang CL, Liang L (2018) Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From ‘“two hit theory”’ to ‘“multiple hit model.”’ World J Gastroenterol 24:2974–2983. https://doi.org/10.3748/wjg.v24.i27.2974

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng H, Stockwell BR (2018) Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol 16:e2006203. https://doi.org/10.1371/journal.pbio.2006203

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu J, Hou C, Li L, Feng D, Li G, Li M, Li C, Gao S, Li M (2016) Vitamin D modifies the associations between circulating betatrophin and cardiometabolic risk factors among youths at risk for metabolic syndrome. Cardiovasc Diabetol 15:142. https://doi.org/10.1186/s12933-016-0461-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giménez-Bastida JA, González-Sarrías A, Espín JC, Schneider C (2020) Inhibition of 5-lipoxygenase-derived leukotrienes and hemiketals as a novel anti-inflammatory mechanism of urolithins. Mol Nutr Food Res 64:e2000129. https://doi.org/10.1002/mnfr.202000129

Article  CAS  PubMed  PubMed Central  Google Scholar 

Günzel D, Fromm M (2012) Claudins and other tight junction proteins. Compr Physiol 2:1819–1852. https://doi.org/10.1002/cphy.c110045

Article  PubMed  Google Scholar 

Kang I, Kim Y, Tomás-Barberán FA, Espín JC, Chung S (2016) Urolithin A, C, and D, but not iso-urolithin A and urolithin B, attenuate triglyceride accumulation in human cultures of adipocytes and hepatocytes. Mol Nutr Food Res 60:1129–1138. https://doi.org/10.1002/mnfr.201500796

Article  CAS  PubMed  Google Scholar 

Lee YH, Lee SG, Lee CJ, Kim SH, Song YM, Yoon MR, Jeon BH, Lee JH, Lee BW, Kang ES, Lee HC, Cha BS (2016) Association between betatrophin/ANGPTL8 and non-alcoholic fatty liver disease: animal and human studies. Sci Rep 6:24013. https://doi.org/10.1038/srep24013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, Tyagi S, Ma L, Westbrook TF, Steinberg GR, Nakada D, Stockwell BR, Gan B (2020) Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol 22:225–234. https://doi.org/10.1038/s41556-020-0461-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee JY, Kim WK, Bae KH, Lee SC, and Lee EW (2021) Lipid metabolism and ferroptosis, Biology (Basel), 10. https://doi.org/10.3390/biology10030184

Lei P, Bai T, Sun Y (2019) Mechanisms of ferroptosis and relations with regulated cell death: a review. Front Physiol 10:139. https://doi.org/10.3389/fphys.2019.00139

Article  PubMed  PubMed Central  Google Scholar 

Li D, Li Y (2020) The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther 5:108. https://doi.org/10.1038/s41392-020-00216-5

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13:376–388. https://doi.org/10.1016/j.cmet.2011.03.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li C, Dong X, Du W, Shi X, Chen K, Zhang W, Gao M (2020a) LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis. Signal Transduct Target Ther 5:187. https://doi.org/10.1038/s41392-020-00297-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Wang TX, Huang X, Li Y, Sun T, Zang S, Guan KL, Xiong Y, Liu J, Yuan HX (2020b) Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity. Liver Int 40:1378–1394. https://doi.org/10.1111/liv.14428

Article  CAS  PubMed  Google Scholar 

Loguercio C, De Girolamo V, de Sio I, Tuccillo C, Ascione A, Baldi F, Budillon G, Cimino L, Di Carlo A, Di Marino MP, Morisco F, Picciotto F, Terracciano L, Vecchione R, Verde V, Del Vecchio Blanco C (2001) Non-alcoholic fatty liver disease in an area of southern Italy: main clinical, histological, and pathophysiological aspects. J Hepatol 35:568–574. https://doi.org/10.1016/s0168-8278(01)00192-1

Article  CAS  PubMed  Google Scholar 

Luo M, Peng D (2018) ANGPTL8: an important regulator in metabolic disorders. Front Endocrinol (lausanne) 9:169. https://doi.org/10.3389/fendo.2018.00169

Article  PubMed  Google Scholar 

Magtanong L, Ko PJ, To M, Cao JY, Forcina GC, Tarangelo A, Ward CC, Cho K, Patti GJ, Nomura DK, Olzmann JA, Dixon SJ (2019) Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem Biol 26:420–32.e9. https://doi.org/10.1016/j.chembiol.2018.11.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mao L, Zhao T, Song Y, Lin L, Fan X, Cui B, Feng H, Wang X, Yu Q, Zhang J, Jiang K, Wang B, Sun C (2020) The emerging role of ferroptosis in non-cancer liver diseases: hype or increasing hope? Cell Death Dis 11:518. https://doi.org/10.1038/s41419-020-2732-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Margini C, Dufour JF (2016) The story of HCC in NAFLD: from epidemiology, across pathogenesis, to prevention and treatment. Liver Int 36:317–324. https://doi.org/10.1111/liv.13031

Article  CAS  PubMed  Google Scholar 

Nagashimada M, Honda M (2021) Effect of microbiome on non-alcoholic fatty liver disease and the role of probiotics, prebiotics, and biogenics, Int J Mol Sci, 22. https://doi.org/10.3390/ijms22158008

Nelson JE, Wilson L, Brunt EM, Yeh MM, Kleiner DE, Unalp-Arida A, Kowdley KV (2011) Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease. Hepatology 53:448–457. https://doi.org/10.1002/hep.24038

Article  CAS  PubMed  Google Scholar 

Olennikov DN, Kashchenko NI, Chirikova NK (2015) In vitro bioaccessibility, human gut microbiota metabolites and hepatoprotective potential of chebulic ellagitannins: a case of Padma Hepaten® Formulation. Nutrients 7:8456–8477. https://doi.org/10.3390/nu7105406

Article  CAS  PubMed  PubMed Central  Google Scholar 

O'Neill LM, Guo CA, Ding F, Phang YX, Liu Z, Shamsuzzaman S, Ntambi JM (2020) Stearoyl-CoA desaturase-2 in murine development, metabolism, and disease, Int J Mol Sci, 21. https://doi.org/10.3390/ijms21228619

Pfundstein B, Haubner R, Würtele G, Gehres N, Ulrich CM, Owen RW (2014) Pilot walnut intervention study of urolithin bioavailability in human volunteers. J Agric Food Chem 62:10264–10273. https://doi.org/10.1021/jf5040652

Article  CAS  PubMed  Google Scholar 

Piwowarski JP, Kiss AK, Granica S, Moeslinger T (2015) Urolithins, gut microbiota-derived metabolites of ellagitannins, inhibit LPS-induced inflammation in RAW 264.7 murine macrophages. Mol Nutr Food Res 59:2168–2177. https://doi.org/10.1002/mnfr.201500264

Article  CAS  PubMed  Google Scholar 

Powell EE, Wong VW, Rinella M (2021) Non-alcoholic fatty liver disease. Lancet 397:2212–2224. https://doi.org/10.1016/S0140-6736(20)32511-3

Article  CAS  PubMed  Google Scholar 

Qi J, Kim JW, Zhou Z, Lim CW, Kim B (2020) Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice. Am J Pathol 190:68–81. https://doi.org/10.1016/j.ajpath.2019.09.011

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif