TRIM-containing 44 aggravates cardiac hypertrophy via TLR4/NOX4-induced ferroptosis

Yang D, Liu HQ, Liu FY, Guo Z, An P, Wang MY, Yang Z, Fan D, Tang QZ (2021) Mitochondria in Pathological cardiac hypertrophy research and therapy. Front Cardiovasc Med 8:822969

Article  CAS  PubMed  Google Scholar 

Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 15:387–407

Article  Google Scholar 

Zhu L, Li C, Liu Q, Xu W, Zhou X (2019) Molecular biomarkers in cardiac hypertrophy. J Cell Mol Med 23:1671–1677

Article  PubMed  PubMed Central  Google Scholar 

Lyon RC, Zanella F, Omens JH, Sheikh F (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116:1462–1476

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsuura TR, Leone TC, Kelly DP (2020) Fueling cardiac hypertrophy. Circ Res 126:197–199

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu J, Li W, Deng KQ, Tian S, Liu H, Shi H, Fang Q, Liu Z, Chen Z, Tian T et al (2022) The E3 ligase TRIM16 is a key suppressor of pathological cardiac hypertrophy. Circ Res 130:1586–1600

Article  CAS  PubMed  Google Scholar 

Sparrer KMJ, Gableske S, Zurenski MA, Parker ZM, Full F, Baumgart GJ, Kato J, Pacheco-Rodriguez G, Liang C, Pornillos O et al (2017) TRIM23 mediates virus-induced autophagy via activation of TBK1. Nat Microbiol 2:1543–1557

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Meng Q, Wang L, Cui Y (2021) TRIM27 protects against cardiac ischemia-reperfusion injury by suppression of apoptosis and inflammation via negatively regulating p53. Biochem Biophys Res Commun 557:127–134

Article  CAS  PubMed  Google Scholar 

Lyu L, Chen Z, McCarty N (2022) TRIM44 links the UPS to SQSTM1/p62-dependent aggrephagy and removing misfolded proteins. Autophagy 18:783–798

Article  CAS  PubMed  Google Scholar 

Yu XZ, Yuan JL, Ye H, Yi K, Qie MR, Hou MM (2021) TRIM44 facilitates ovarian cancer proliferation, migration, and invasion by inhibiting FRK. Neoplasma 68:751–759

Article  CAS  PubMed  Google Scholar 

Luo F, Wu Y, Zhu L, Zhang J, Liu Y, Jia W (2020) Knockdown of HIF1A-AS2 suppresses TRIM44 to protect cardiomyocytes against hypoxia-induced injury. Cell Biol Int 44:1523–1534

Article  CAS  PubMed  Google Scholar 

Gao L, Liu Y, Guo S, Xiao L, Wu L, Wang Z, Liang C, Yao R, Zhang Y (2018) LAZ3 protects cardiac remodeling in diabetic cardiomyopathy via regulating miR-21/PPARa signaling. Biochim Biophys Acta Mol Basis Dis 1864:3322–3338

Article  CAS  PubMed  Google Scholar 

Jiang XY, Guan FF, Ma JX, Dong W, Qi XL, Zhang X, Chen W, Gao S, Gao X, Pan S et al (2023) Cardiac-specific Trim44 knockout in rat attenuates isoproterenol-induced cardiac remodeling via inhibition of AKT/mTOR pathway. Dis Model Mech 16

Wei CY, Wang L, Zhu MX, Deng XY, Wang DH, Zhang SM, Ying JH, Yuan X, Wang Q, Xuan TF et al (2019) TRIM44 activates the AKT/mTOR signal pathway to induce melanoma progression by stabilizing TLR4. J Exp Clin Cancer Res 38:137

Article  PubMed  PubMed Central  Google Scholar 

Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D (2016) Ferroptosis: process and function. Cell Death Differ 23:369–379

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li N, Jiang W, Wang W, Xiong R, Wu X, Geng Q (2021) Ferroptosis and its emerging roles in cardiovascular diseases. Pharmacol Res 166:105466

Article  CAS  PubMed  Google Scholar 

Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X et al (2019) Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A 116:2672–2680

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li N, Wang W, Zhou H, Wu Q, Duan M, Liu C, Wu H, Deng W, Shen D, Tang Q (2020) Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic Biol Med 160:303–318

Article  CAS  PubMed  Google Scholar 

Wang J, Deng B, Liu Q, Huang Y, Chen W, Li J, Zhou Z, Zhang L, Liang B, He J et al (2020) Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis 11:574

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

Article  Google Scholar 

Cadenas S (2018) ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med 117:76–89

Article  CAS  PubMed  Google Scholar 

Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, Boonpraman N, Yi SS, Yoo ID, Moon JS (2021) NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol 41:101947

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Xu S, Zhao CLiu B (2019) Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem Biophys Res Commun 516:37–43

Article  CAS  PubMed  Google Scholar 

de Vicente LG, Munoz VR, Pinto AP, Rovina RL, da Rocha AL, Marafon BB, Tavares MEA, Teixeira GR, Ferrari GD, Alberici LC et al (2021) TLR4 deletion increases basal energy expenditure and attenuates heart apoptosis and ER stress but mitigates the training-induced cardiac function and performance improvement. Life Sci 285:119988

Article  PubMed  Google Scholar 

Suzuki Y, Hattori K, Hamanaka J, Murase T, Egashira Y, Mishiro K, Ishiguro M, Tsuruma K, Hirose Y, Tanaka H et al (2012) Pharmacological inhibition of TLR4-NOX4 signal protects against neuronal death in transient focal ischemia. Sci Rep 2:896

留言 (0)

沒有登入
gif