Redox-driven cardioprotective effects of sodium-glucose co-transporter-2 inhibitors: comparative review

Diabetes Atlas. https://diabetesatlas.org/. Accessed 22 September 2022.

Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. The Lancet. 2017 Jun;389(10085):2239–51.

Rieg T, Vallon V. Development of SGLT1 and SGLT2 inhibitors.Diabetologia. 2018 Oct22;61(10):2079–86.

Ehrenkranz JRL, Lewis NG, Ronald Kahn C, Roth J. Phlorizin: a review. Diabetes Metab Res Rev. 2005 Jan;21(1):31–8.

Mackenzie B, Loo DDF, Panayotova-Heiermann M, Wright EM. Biophysical characteristics of the pig kidney Na+/Glucose cotransporter SGLT2 reveal a common mechanism for SGLT1 and SGLT2. J Biol Chem. 1996 Dec;271(51):32678–83.

Wright EM. SGLT2 Inhibitors: Physiology and Pharmacology. Kidney360. 2021 Dec 30;2(12):2027–37.

Grempler R, Thomas L, Eckhardt M, Himmelsbach F, Sauer A, Sharp DE, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012 Jan;14(1):83–90.

Aguillón AR, Mascarello A, Segretti ND, de Azevedo HFZ, Guimaraes CRW, Miranda LSM et al. Synthetic Strategies toward SGLT2 Inhibitors.Org Process Res Dev. 2018 Apr20;22(4):467–88.

Zelniker TA, Braunwald E. Mechanisms of Cardiorenal Effects of Sodium-Glucose cotransporter 2 inhibitors. J Am Coll Cardiol. 2020 Feb;75(4):422–34.

Ling W, Huang Y, Huang YM, Fan RR, Sui Y, Zhao HL. Global trend of diabetes mortality attributed to vascular complications, 2000–2016. Cardiovasc Diabetol. 2020 Dec;20(1):182.

Hallow KM, Gebremichael Y, Helmlinger G, Vallon V. Primary proximal tubule hyperreabsorption and impaired tubular transport counterregulation determine glomerular hyperfiltration in diabetes: a modeling analysis. American Journal of Physiology-Renal Physiology. 2017 May 1;312(5):F819–35.

Wilcox CS. Antihypertensive and renal mechanisms of SGLT2 (sodium-Glucose linked transporter 2) inhibitors. Hypertension. 2020 Apr;75(4):894–901.

Bailey CJ, Day C, Bellary S. Renal protection with SGLT2 inhibitors: Effects in Acute and chronic kidney disease. Curr Diab Rep. 2022 Jan;22(3):39–52.

Thomson SC, Vallon V. Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats. American Journal of Physiology-Renal Physiology. 2021 May 1;320(5):F761–71.

Packer M. Mechanisms leading to Differential Hypoxia-Inducible factor signaling in the Diabetic kidney: modulation by SGLT2 inhibitors and Hypoxia Mimetics. Am J Kidney Dis. 2021 Feb;77(2):280–6.

Nangaku M. Chronic hypoxia and Tubulointerstitial Injury: A final common pathway to end-stage renal failure. J Am Soc Nephrol. 2006 Jan;17(1):17–25.

Packer M. Role of Deranged Energy Deprivation Signaling in the pathogenesis of Cardiac and Renal Disease in States of Perceived Nutrient Overabundance. Circulation. 2020 Jun;23(25):2095–105.

Jo HA, Seo JH, Lee S, Yu M, yeon, Bae E, Kim DK, et al. Metabolomic profiling in kidney cells treated with a sodium glucose-cotransporter 2 inhibitor. Sci Rep. 2023 Feb;4(1):2026.

Lu YP, Zhang ZY, Wu HW, Fang LJ, Hu B, Tang C, et al. SGLT2 inhibitors improve kidney function and morphology by regulating renal metabolic reprogramming in mice with diabetic kidney disease. J Transl Med. 2022 Sep;14(1):420.

Sen T, Heerspink HJL. A kidney perspective on the mechanism of action of sodium glucose co-transporter 2 inhibitors.Cell Metab. 2021Apr;33(4):732–9.

Packer M. Critical reanalysis of the Mechanisms underlying the Cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient Deprivation Signaling/Autophagy hypothesis. Circulation. 2022 Nov;146(18):1383–405.

Davis RC. ABC of heart failure: history and epidemiology. BMJ. 2000 Jan;1(7226):39–42.

Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy.Nat Rev Cardiol. 2018 Jul19;15(7):387–407.

Tran DH, Wang Z. v. Glucose Metabolism in Cardiac Hypertrophy and Heart Failure. J Am Heart Assoc. 2019 Jun 18;8(12): e012673.

Pereira RO, Wende AR, Olsen C, Soto J, Rawlings T, Zhu Y et al. Inducible Overexpression of GLUT1 Prevents Mitochondrial Dysfunction and Attenuates Structural Remodeling in Pressure Overload but Does Not Prevent Left Ventricular Dysfunction. J Am Heart Assoc. 2013 Sep 26;2(5): e000301.

Zhang L, Jaswal JS, Ussher JR, Sankaralingam S, Wagg C, Zaugg M, et al. Cardiac insulin-resistance and decreased mitochondrial Energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Circ Heart Fail. 2013 Sep;6(5):1039–48.

Makarewich CA, Zhang H, Davis J, Correll RN, Trappanese DM, Hoffman NE et al. Transient Receptor Potential Channels Contribute to Pathological Structural and Functional Remodeling After Myocardial Infarction.Circ Res. 2014 Aug29;115(6):567–80.

Kolwicz SC, Purohit S, Tian R. Cardiac Metabolism and its Interactions With Contraction, Growth, and Survival of Cardiomyocytes.Circ Res. 2013 Aug16;113(5):603–16.

Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac Energy Metabolism in Heart failure. Circ Res. 2021 May;14(10):1487–513.

Beer M, Seyfarth T, Sandstede J, Landschütz W, Lipke C, Köstler H, et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with 31P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol. 2002 Oct;40(7):1267–74.

Tomin T, Schittmayer M, Honeder S, Heininger C, Birner-Gruenberger R. Irreversible oxidative post-translational modifications in heart disease.Expert Rev Proteomics. 2019 Aug3;16(8):681–93.

Duarte-Jurado AP, Gopar-Cuevas Y, Saucedo-Cardenas O, Loera-Arias M, de Montes-de-Oca-Luna J, Garcia-Garcia R et al. A,. Antioxidant Therapeutics in Parkinson’s Disease: Current Challenges and Opportunities. Antioxidants. 2021 Mar 15;10(3):453.

Gray SP, Shah AM, Smyrnias I. NADPH oxidase 4 and its role in the cardiovascular system. Vascular Biology. 2019 Aug;12(1):H59–66.

Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure.Journal of Clinical Investigation. 2005 Mar1;115(3):500–8.

Izzo C, Vitillo P, di Pietro P, Visco V, Strianese A, Virtuoso N et al. The Role of Oxidative Stress in Cardiovascular Aging and Cardiovascular Diseases.Life. 2021 Jan15;11(1):60.

Tomin T, Schittmayer M, Sedej S, Bugger H, Gollmer J, Honeder S et al. Mass Spectrometry-Based Redox and Protein Profiling of Failing Human Hearts. Int J Mol Sci. 2021 Feb 11;22(4):1787.

Marsin AS, Bertrand† L, Rider MH, Deprez J, Beauloye C, Vincent‡ MF, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol. 2000 Oct;10(20):1247–55.

Lionetti V, Stanley WC, Recchia FA. Modulating fatty acid oxidation in heart failure.Cardiovasc Res. 2011 May1;90(2):202–9.

Nascimben L, Ingwall JS, Lorell BH, Pinz I, Schultz V, Tornheim K, et al. Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension. 2004 Nov;44(5):662–7.

Wang J, Xu J, Wang Q, Brainard RE, Watson LJ, Jones SP, et al. Reduced Cardiac Fructose 2,6 Bisphosphate increases hypertrophy and decreases glycolysis following aortic constriction. PLoS ONE. 2013 Jan;7(1):e53951.

Wang Q, Donthi R, Wang J, Lange AJ, Watson LJ, Jones SP, et al. Cardiac phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase increases glycolysis, hypertrophy, and myocyte resistance to hypoxia. Am J Physiol Heart Circ Physiol. 2008 Jun;294(6):H2889–97.

Donthi R, Ye G, Wu C, McClain DA, Lange AJ, Epstein PN. Cardiac expression of kinase-deficient 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase inhibits glycolysis, promotes hypertrophy, impairs myocyte function, and reduces insulin sensitivity. J Biol Chem. 2004 Nov;279(46):48085–90.

Kim TT, Dyck JRB. Is AMPK the savior of the failing heart? Trends in Endocrinology & Metabolism. 2015 Jan;26(1):40–8.

Li X, Liu J, Lu Q, Ren D, Sun X, Rousselle T et al. AMPK: a therapeutic target of heart failure—not only metabolism regulation. Biosci Rep. 2019 Jan 31;39(1): BSR20181767.

Gélinas R, Mailleux F, Dontaine J, Bultot L, Demeulder B, Ginion A et al. AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation.Nat Commun. 2018 Jan25;9(1):374.

Zhang F, Liu L, Xie Y, Wang J, Chen X, Zheng S et al. Cardiac contractility modulation ameliorates myocardial metabolic remodeling in a rabbit model of chronic heart failure through activation of AMPK and PPAR-α pathway.Open Medicine. 2022 Feb22;17(1):365–74.

Shu H, Hang W, Peng Y, Nie J, Wu L, Zhang W et al. Trimetazidine Attenuates Heart Failure by Improving Myocardial Metabolism via AMPK.Front Pharmacol. 2021 Sep 15;12: 707399.

Koyani CN, Plastira I, Sourij H, Hallström S, Schmidt A, Rainer PP, et al. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacol Res. 2020 Aug;158:104870.

Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters.Cardiovasc Res. 2017 Mar15;113(4):411–21.

Makrecka-Kuka M, Liepinsh E, Murray AJ, Lemieux H, Dambrova M, Tepp K et al. Altered mitochondrial metabolism in the insulin‐resistant heart. Acta Physiologica. 2020 Mar 30;228(3):e13430.

Iacobini C, Vitale M, Haxhi J, Pesce C, Pugliese G, Menini S. Food-Related Carbonyl Stress in Cardiometabolic and Cancer Risk Linked to Unhealthy Modern Diet. Nutrients. 2022 Mar 3;14(5):1061.

Zhao R, Jiang S, Zhang L, Yu Z. Mitochondrial electron transport chain, ROS generation and uncoupling (Review).Int J Mol Med. 2019 Jul;44(1):3-15.

Kiyuna LA, Albuquerque RP e, Chen CH, Mochly-Rosen D, Ferreira JCB. Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities. Free Radic Biol Med. 2018 Dec;129:155–68.

Noordali H, Loudon BL, Frenneaux MP, Madhani M. Cardiac metabolism — a promising therapeutic target for heart failure. Pharmacol Ther. 2018 Feb;182:95–114.

Zinman B, Inzucchi SE, Lachin JM, Wanner C, Ferrari R, Fitchett D, et al. Rationale, design, and baseline characteristics of a randomized, placebo-controlled cardiovascular outcome trial of empagliflozin (EMPA-REG OUTCOME™). Cardiovasc Diabetol. 2014;13(1):102.

Article  PubMed  PubMed Central  Google Scholar 

Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, Cardiovascular Outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015 Nov;26(22):2117–28.

Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes.New England Journal of Medicine. 2017 Aug17;377(7):644–57.

Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes.New England Journal of Medicine. 2019 Jan24;380(4):347–57.

McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction.New England Journal of Medicine. 2019 Nov21;381(21):1995–2008.

Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure.New England Journal of Medicine. 2020 Oct8;383(15):1413–24.

Rauch-Kröhnert U, Landmesser U. Gliflozine – in Zukunft Kardioprotektiva? Internist (Berl). 2021 Jul 23;62(7):786–95.

Ni L, Yuan C, Chen G, Zhang C, Wu X. SGLT2i: beyond the glucose-lowering effect.Cardiovasc Diabetol. 2020 Dec26;19(1):98.

Baartscheer A, Schumacher CA, Wüst RCI, Fiolet JWT, Stienen GJM, Coronel R et al. Empagliflozin decreases myocardial cytoplasmic Na + through inhibition of the cardiac Na+/H + exchanger in rats and rabbits.Diabetologia. 2017 Mar17;60(3):568–73.

Uthman L, Baartscheer A, Bleijlevens B, Schumacher CA, Fiolet JWT, Koeman A et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H + exchanger, lowering of cytosolic Na + and vasodilation. Diabetologia. 2018 Mar 2;61(3):722–6.

Chung YJ, Park KC, Tokar S, Eykyn TR, Fuller W, Pavlovic D, et al. Off-target effects of sodium-glucose co-transporter 2 blockers: empagliflozin does not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart. Cardiovasc Res. 2021 Dec 17;117(14):2794–806.

Hawley SA, Ford RJ, Smith BK, Gowans GJ, Mancini SJ, Pitt RD et al. The Na+/Glucose Cotransporter Inhibitor Canagliflozin Activates AMPK by Inhibiting Mitochondrial Function and Increasing Cellular AMP Levels. Diabetes. 2016 Sep 1;65(9):2784–94.

Mancini SJ, Boyd D, Katwan OJ, Strembitska A, Almabrouk TA, Kennedy S, et al. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms. Sci Rep. 2018 Dec;27(1):5276.

Huttl M, Markova I, Miklankova D, Oliyarnyk O, Trnovska J, Kucera J et al. Metabolic cardio- and reno-protective effects of empagliflozin in a prediabetic rat model.J Physiol Pharmacol.2020 Oct;71(5): 635–645.

Kogot-Levin A, Riahi Y, Abramovich I, Mosenzon O, Agranovich B, Kadosh L et al. Mapping the metabolic reprogramming induced by sodium-glucose cotransporter 2 inhibition.JCI Insight. 2023 Apr 10;8(7):e164296.

Salt IP, Hardie DG. AMP-Activated Protein Kinase.Circ Res. 2017 May26;120(11):1825–41.

El-Daly M, Pulakazhi Venu VK, Saifeddine M, Mihara K, Kang S, Fedak PWM, et al. Hyperglycaemic impairment of PAR2-mediated vasodilation: Prevention by inhibition of aortic endothelial sodium-glucose-co-transporter-2 and minimizing oxidative stress. Vascul Pharmacol. 2018 Oct;109:56–71.

Semo D, Obergassel J, Dorenkamp M, Hemling P, Strutz J, Hiden U et al. The Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitor Empagliflozin Reverses Hyperglycemia-Induced Monocyte and Endothelial Dysfunction Primarily through Glucose Transport-Independent but Redox-Dependent Mechanisms. J Clin Med. 2023 Feb 8;12(4):1356.

Kolijn D, Pabel S, Tian Y, Lódi M, Herwig M, Carrizzo A et al. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc Res. 2021 Jan 21;117(2):495–507.

Li C, Zhang J, Xue M, Li X, Han F, Liu X, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 2019 Dec;2(1):15.

Koizumi T, Watanabe M, Yokota T, Tsuda M, Handa H, Koya J et al. Empagliflozin suppresses mitochondrial reactive oxygen species generation and mitigates the inducibility of atrial fibrillation in diabetic rats.Front Cardiovasc Med. 2023 Feb 6;10.

Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018 May;15:335–46.

Cai C, Guo Z, Chang X, Li Z, Wu F, He J, et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biol. 2022 Jun;52:102288.

Yaribeygi H, Atkin SL, Butler AE, Sahebkar A. Sodium–glucose cotransporter inhibitors and oxidative stress: An update.J Cell Physiol. 2019 Apr15;234(4):3231–7.

Zannad F, Ferreira JP, Butler J, Filippatos G, Januzzi JL, Sumin M et al. Effect of empagliflozin on circulating proteomics in heart failure: mechanistic insights into the EMPEROR programme. Eur Heart J. 2022 Dec 21;43(48):4991–5002.

留言 (0)

沒有登入
gif