Caf1 regulates the histone methyltransferase activity of Ash1 by sensing unmodified histone H3

Alqarni SSM, Murthy A, Zhang W, Przewloka MR, Silva APG, Watson AA, Lejon S, Pei XY, Smits AH, Kloet SL, et al. Insight into the architecture of the NuRD complex: Structure of the RbAp48-MTA1 subcomplex. J Biol Chem. 2014;289:21844–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

An S, Yeo KJ, Jeon YH, Song JJ. Crystal structure of the human histone methyltransferase ASH1L catalytic domain and its implications for the regulatory mechanism. J Biol Chem. 2011;286:8369–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Callebaut I, Courvalin JC, Mornon JP. The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Lett. 1999;446:189–93.

Article  CAS  PubMed  Google Scholar 

Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell. 2002;111:185–96.

Article  CAS  PubMed  Google Scholar 

Dhaliwal J, Qiao Y, Calli K, Martell S, Race S, Chijiwa C, Glodjo A, Jones S, Rajcan-Separovic E, Scherer SW, et al. Contribution of multiple inherited variants to autism spectrum disorder (ASD) in a family with 3 affected siblings. Genes. 2021;12:1053.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dorafshan E, Kahn TG, Glotov A, Savitsky M, Schwartz YB. Genetic dissection reveals the role of Ash1 domains in counteracting polycomb repression. G3 (Bethesda). 2019;9:3801–12.

Article  CAS  PubMed  Google Scholar 

Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Muller S, Pawson T, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012;149:214–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell. 1997;89:341–7.

Article  CAS  PubMed  Google Scholar 

Hou P, Huang C, Liu CP, Yang N, Yu T, Yin Y, Zhu B, Xu RM. Structural insights into stimulation of Ash1L’s H3K36 methyltransferase activity through Mrg15 binding. Structure. 2019;27:837-845.e833.

Article  CAS  PubMed  Google Scholar 

Huang C, Yang F, Zhang Z, Zhang J, Cai G, Li L, Zheng Y, Chen S, Xi R, Zhu B. Mrg15 stimulates Ash1 H3K36 methyltransferase activity and facilitates Ash1 Trithorax group protein function in Drosophila. Nat Commun. 2017;8:1649–1649.

Article  PubMed  PubMed Central  Google Scholar 

Kasinath V, Faini M, Poepsel S, Reif D, Feng XA, Stjepanovic G, Aebersold R, Nogales E. Structures of human PRC2 with its cofactors AEBP2 and JARID2. Science. 2018;359:940–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Gene Dev. 2002;16:2893–905.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee Y, Yoon E, Cho S, Schmähling S, Müller J, Song JJ. Structural basis of MRG15-mediated activation of the ASH1L histone methyltransferase by releasing an autoinhibitory loop. Structure. 2019;27:846-852.e843.

Article  CAS  PubMed  Google Scholar 

Lejon S, Thong SY, Murthy A, AlQarni S, Murzina NV, Blobel GA, Laue ED, Mackay JP. Insights into association of the NuRD complex with FOG-1 from the crystal structure of an RbAp48.FOG-1 complex. J Biol Chem. 2011;286:1196–203.

Article  CAS  PubMed  Google Scholar 

Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007;128:707–19.

Article  CAS  PubMed  Google Scholar 

Luger K, Rechsteiner TJ, Richmond TJ. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 1999;304:3–19.

Article  CAS  PubMed  Google Scholar 

Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19:679–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O’Connor MB, Kingston RE, Simon JA. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell. 2002;111:197–208.

Article  PubMed  Google Scholar 

Nowak AJ, Alfieri C, Stirnimann CU, Rybin V, Baudin F, Ly-Hartig N, Lindner D, Muller CW. Chromatin-modifying complex component Nurf55/p55 associates with histones H3 and H4 and polycomb repressive complex 2 subunit Su(z)12 through partially overlapping binding sites. J Biol Chem. 2011;286:23388–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okamoto N, Miya F, Tsunoda T, Kato M, Saitoh S, Yamasaki M, Kanemura Y, Kosaki K. Novel MCA/ID syndrome with ASH1L mutation. Am J Med Genet A. 2017;173:1644–8.

Article  CAS  PubMed  Google Scholar 

Parthun MR, Widom J, Gottschling DE. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell. 1996;87:85–94.

Article  CAS  PubMed  Google Scholar 

Poepsel S, Kasinath V, Nogales E. Cryo-EM structures of PRC2 simultaneously engaged with two functionally distinct nucleosomes. Nat Struct Mol Biol. 2018;25:154–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rongve A, Witoelar A, Ruiz A, Athanasiu L, Abdelnour C, Clarimon J, Heilmann-Heimbach S, Hernández I, Moreno-Grau S, de Rojas I, et al. GBA and APOE ε4 associate with sporadic dementia with Lewy bodies in European genome wide association study. Sci Rep. 2019;9:1–8.

Google Scholar 

Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, Peng M, Collins R, Grove J, Klei L, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180:568-584.e523.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmähling S, Meiler A, Lee Y, Mohammed A, Finkl K, Tauscher K, Israel L, Borath M, Philippou-Massier J, Blum H et al. Regulation and function of H3K36 di-methylation by the trithorax-group protein complex AMC. Development. 2018:dev.163808–dev.163808.

Schmitges FW, Prusty AB, Faty M, Stutzer A, Lingaraju GM, Aiwazian J, Sack R, Hess D, Li L, Zhou S, et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell. 2011;42:330–41.

Article  CAS  PubMed  Google Scholar 

Shen W, Krautscheid P, Rutz AM, Bayrak-Toydemir P, Dugan SL. De novo loss-of-function variants of ASH1L are associated with an emergent neurodevelopmental disorder. Eur J Med Genet. 2019;62:55–60.

Article  PubMed  Google Scholar 

Simon MD, Chu F, Racki LR, de la Cruz CC, Burlingame AL, Panning B, Narlikar GJ, Shokat KM. The site-specific installation of methyl-lysine analogs into recombinant histones. Cell. 2007;128:1003–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith S, Stillman B. Purification and characterization of Caf-I, a human cell factor required for chromatin assembly during DNA-replication invitro. Cell. 1989;58:15–25.

Article  CAS  PubMed  Google Scholar 

Song JJ, Garlick JD, Kingston RE. Structural basis of histone H4 recognition by p55. Genes Dev. 2008;22:1313–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.

Article  CAS  PubMed  Google Scholar 

Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science. 1996;272:408–11.

Article  CAS  PubMed  Google Scholar 

Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol. 2007;14:1025–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tripoulas N, LaJeunesse D, Gildea J, Shearn A. The Drosophila ash1 gene product, which is localized at specific sites on polytene chromosomes, contains a SET domain and a PHD finger. Genetics. 1996;143:913–28.

Article 

留言 (0)

沒有登入
gif