Bifunctional role of some biogenic nanoparticles in controlling wilt disease and promoting growth of common bean

Abdelaziz AM, Dacrory S, Hashem AH, Attia MS, Hasanin M, Fouda HM, Kamel S, ElSaied H (2021) Protective role of zinc oxide nanoparticles based hydrogel against wilt disease of pepper plant. Biocatal Agric Biotechnol 35:102083. https://doi.org/10.1016/j.bcab.2021.102083

Article  CAS  Google Scholar 

Abdelhakim HK, El-Sayed ER, Rashidi FB (2020) Biosynthesis of zinc oxide nanoparticles with antimicrobial, anticancer, antioxidant and photocatalytic activities by the endophytic Alternaria tenuissima. J Appl Microbiol 128:1634–1646. https://doi.org/10.1111/jam.14581

Article  CAS  PubMed  Google Scholar 

Ahmed AIS, Yadav DR, Lee YS (2016) Applications of nickel nanoparticles for control of Fusarium wilt on lettuce and tomato. Int J Innov Res Sci Eng Technol 5:7378–7385. https://doi.org/10.15680/IJIRSET.2016.0505132

Article  Google Scholar 

Alam T, Khan RAA, Ali A, Sher H, Ullah Z, Ali M (2019) Biogenic synthesis of iron oxide nanoparticles via Skimmia laureola and their antibacterial efficacy against bacterial wilt pathogen Ralstonia solanacearum. Mater Sci Eng 98:101–108. https://doi.org/10.1016/j.msec.2018.12.117

Article  CAS  Google Scholar 

Anwar MM, Aly SSH, Nasr EH, El-Sayed ER (2022) Improving carboxymethyl cellulose edible coating using ZnO nanoparticles from irradiated Alternaria tenuissima. AMB Express 12:116. https://doi.org/10.1186/s13568-022-01459-x

Arie T (2010) Phylogeny and phytopathogenicity mechanisms of soilborne Fusarium oxysporum. J Gen Plant Pathol 76:403–405. https://doi.org/10.1007/s10327-010-0264-z

Article  Google Scholar 

Ashraf H, Anjum T, Riaz S, Ahmad IS, Irudayaraj J, Javed S, Qaiser U, Naseem S (2021) Inhibition mechanism of green-synthesized copper oxide nanoparticles from Cassia fistula towards Fusarium oxysporum by boosting growth and defense response in tomatoes. Environ Sci Nano 8:1729–1748. https://doi.org/10.1039/D0EN01281E

Article  CAS  Google Scholar 

Awasthi A, Bansal S, Jangir LK, Awasthi G, Awasthi KK, Awasthi K (2017) Effect of ZnO nanoparticles on germination of Triticum aestivum seeds. Macromol Symp 376:1700043. https://doi.org/10.1002/masy.201700043

Article  CAS  Google Scholar 

Banerjee A, Sarkar A, Acharya K, Chakraborty N (2021) Nanotechnology: an emerging hope in crop improvement. Lett Appl NanoBioSci 10:2784–2803. https://doi.org/10.33263/LIANBS104.27842803

Article  Google Scholar 

Boix-Ruíz A, Galvez-Paton L, de Cara-García M, Palmero-Llamas D, CamachoFerre F, Tello Marquina JC (2015) Comparison of analytical techniques used to identify tomato-pathogenic strains of Fusarium oxysporum. Phytoparasitica 43:471–483. https://doi.org/10.1007/s12600014-0444-z

Article  Google Scholar 

Borgatta J, Ma C, Hudson-Smith N, Elmer W, Pérez CDP, Torre-Roche RDL, Zuverza-Mena N, Haynes CL, White JC, Hamers RJ (2018) Copper nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): role of particle morphology, composition, and dissolution behavior. ACS Sustainable Chem Eng 6:14847–14856. https://doi.org/10.1021/acssuschemeng.8b03379

Article  CAS  Google Scholar 

Cai L, Cai L, Jia H, Liu C, Wang D, Sun X (2020) Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. J Hazard Mater 393:122415. https://doi.org/10.1016/j.jhazmat.2020.122415

Article  CAS  PubMed  Google Scholar 

Carter MR, Gregorich EG (2008) Soil sampling and methods of analysis, second edn. Canadian Society of Soil Science

Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119. https://doi.org/10.1007/s11099-015-0167-5

Article  CAS  Google Scholar 

El-Sayed ER, Gach J, Olejniczak T, Boratyński F (2022b) A new endophyte Monascus ruber SRZ112 as an efficient production platform of natural pigments using agro-industrial wastes. Sci Rep 12:12611. https://doi.org/10.1038/s41598-022-16269-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Sayed ER, Mousa SA, Abdou DAM, Abo El-Seoud MA, Elmehlawy AA, Mohamed SS (2022c) Exploiting the exceptional biosynthetic potency of the endophytic aspergillus terreus in enhancing production of Co3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles using bioprocess optimization and gamma irradiation. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2021.12.019

Article  PubMed  PubMed Central  Google Scholar 

El-Sayed ER, Mansour DS, Morsi RM, Abd Elmonem HA (2023) Gamma irradiation mediated production improvement of some myco-fabricated nanoparticles and exploring their wound healing, anti-inflammatory and acetylcholinesterase inhibitory potentials. Sci Rep 13:1629. https://doi.org/10.1038/s41598-023-28670-5

El-Sharkawy RM, El-Shora HM (2020) Biocontrol of wilt-inducing Fusarium oxysporum by aqueous leaf extract from egyptian Ammi majus and Ammi visnaga. Egypt J Bot 60:423–435. https://doi.org/10.21608/ejbo.2020.20709.1409

Article  Google Scholar 

Elizabeth CHT, Carvalho LB, Pereira AES, Montanha GS, Corrêa CG, Carvalho HWP, Ganin AY, Fraceto LF, Yiu HHP (2020) Localization of coated iron oxide (Fe3O4) nanoparticles on tomato seeds and their effects on growth. ACS Appl Bio Mater 3:4109–4117. https://doi.org/10.1021/acsabm.0c00216

Article  CAS  Google Scholar 

Elmer W, Torre-Roche RDL, Pagano L, Majumdar S, Zuverza-Mena N, Gardea-Torresdey J, White J, J.C (2018) Effect of metalloid and metal oxide nanoparticles on Fusarium wilt of watermelon. Plant Dis 102:1394–1401. https://doi.org/10.1094/PDIS-10-17-1621-RE

Article  CAS  PubMed  Google Scholar 

Elmer WH, Zuverza-Mena N, Triplett LR, Roberts EL, Silady RA, White JC (2021a) Foliar application of copper oxide nanoparticles suppresses Fusarium wilt development on Chrysanthemum. Environ Sci Technol 55:10805–10810. https://doi.org/10.1021/acs.est.1c02323

Article  CAS  PubMed  Google Scholar 

Elmer W, Torre-Roche RDL, Zuverza-Mena N, Dimkpa C, Gardea-Torresdey J, White J (2021b) Influence of single and combined mixtures of metal oxide nanoparticles on eggplant growth, yield, and Verticillium wilt severity. Plant Dis 105:1153–1161. https://doi.org/10.1094/PDIS07-20-1636-RE

Article  CAS  PubMed  Google Scholar 

El-Sayed ER (2021) Discovery of the anticancer drug vinblastine from the endophytic Alternaria alternata and yield improvement by gamma irradiation mutagenesis. J Appl Microbiol. https://doi.org/10.1111/jam.15169

El-Sayed ER, Zaki AG (2023) Unlocking the biosynthetic potential of Penicillium roqueforti for hyperproduction of the immunosuppressant mycophenolic acid: Gamma radiation mutagenesis and response surface optimization of fermentation medium. Biotechnol Appl Biochem https://doi.org/10.1002/bab.2353

El-Sayed ER, Abdelhakim HK, Ahmed AS (2020a) Solid-state fermentation for enhanced production of selenium nanoparticles by gamma-irradiated Monascus purpureus and their biological evaluation and photocatalytic activities. Bioproc Biosyst Eng 43:797–809. https://doi.org/10.1007/s00449-019-02275-7

El-Sayed ER, Abdelhakim HK, Zakaria Z (2020b) Extracellular biosynthesis of cobalt ferrite nanoparticles by Monascus purpureus and their antioxidant, anticancer and antimicrobial activities: yield enhancement by gamma irradiation. Mater Sci Eng C 107:110318. https://doi.org/10.1016/j.msec2019.110318

El-Sayed ER, Ahmed AS, Abdelhakim HK (2020c) A novel source of the cardiac glycoside digoxin from the endophytic fungus Epicoccum nigrum: isolation, characterization, production enhancement by gamma irradiation mutagenesis and anticancer activity evaluation. J Appl Microbiol 128:747–762. https://doi.org/10.1011/JAM.14510

El-Sayed ER, Hazaa MA, Shebl MA, Amer MM, Mahmoud SR, Khattab AA (2022a) Bioprospecting endophytic fungi for bioactive metabolites and use of irradiation to improve their bioactivities. AMB Express 12:46. https://doi.org/10.1186/s13568-022-01386x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fatima F, Arshya Hashim A, Anees S (2021) Efficacy of nanoparticles as nanofertilizer production: a review. Environ Sci Pollut Res 28:1292–1303. https://doi.org/10.1007/s11356-020-11218-9

Article  CAS  Google Scholar 

Fiol DF, Terrile MC, Frik J, Mesas FA, Álvarez VA, Casalongué CA (2021) Nanotechnology in plants: recent advances and challenges. J Chem Technol Biotechnol 96:2095–2108. https://doi.org/10.1002/jctb.6741

Article  CAS  Google Scholar 

Fu L, Wang Z, Dhankher OP, Xing B (2020) Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. J Exp Botany 71:507–519. https://doi.org/10.1093/jxb/erz314

Article  CAS  Google Scholar 

Goffeau A (2008) Drug resistance: the fight against fungi. Nature 452:541–542. https://doi.org/10.1038/452541a

Article  CAS  PubMed  Google Scholar 

Hatab MH, Rashad E, Saleh HM, El-Sayed ER, Abu Taleb AM (2022) Effects of dietary supplementation of myco-fabricated zinc oxide nanoparticles on performance, histological changes, and tissues Zn concentration in broiler chicks. Sci Rep 12:18791. https://doi.org/10.1038/s41598-022-22836-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayat I, Ahmad A, Masud T, Ahmed A, Bashir S (2014) Nutritional and health perspectives of beans (Phaseolus vulgaris L.): an overview. Crit Rev Food Sci Nutr 54:580–592. https://doi.org/10.1080/10408398.2011.596639

Article  CAS  PubMed  Google Scholar 

Hussein HG, El-Sayed ER, Younis NA, Hamdy AA, Easa SM (2022) Harnessing endophytic fungi for biosynthesis of selenium nanoparticles and exploring their bioactivities. AMB Expr 12:68. https://doi.org/10.1186/s13568-022-01408-8

Article  CAS  Google Scholar 

Ibrahem NA, Latif HH, Seif M, Mogazy AM (2021) Impact of different crystal sizes of nano-iron oxide as fertilizer on wheat plants photosynthetic pigments content. Egypt J Chem 64:4635–4639. https://doi.org/10.21608/ejchem.2021.67176.3447

Article  Google Scholar 

Inami K, Kashiwa T, Kawabe M, Onokubo-Okabe A, Ishikawa N, P´erez ER, Hozumi T, Caballero LA, de Baldarrago FC, Roco MJ, Madadi KA, Peever TL, Teraoka T, Kodama M, Arie T (2014) The tomato wilt fungus Fusarium oxysporum f. sp. lycopersici shares common ancestors with nonpathogenic F. oxysporum isolated from wild tomatoes in the peruvian Andes. Microbes Environ 29:200–210. https://doi.org/10.1264/jsme2.ME13184

Article  PubMed  PubMed Central  Google Scholar 

Irum S, Jabeen N, Ahmad KS, Shafique S, Khan TF, Gul H, Anwaar S, Shah NI, Mehmood A, Hussain SZ (2020) Biogenic iron oxide nanoparticles enhance callogenesis and regeneration pattern of recalcitrant Cicer arietinum L. PLoS ONE 1:e0242829. https://doi.org/10.1371/journal.pone.0242829

Article  CAS  Google Scholar 

Jahani M, Khavari-Nejad RA, Mahmoodzadeh H, Saadatmand S (2019) Effects of foliar application of cobalt oxide nanoparticles on growth, photosynthetic pigments, oxidative indicators, non-enzymatic antioxidants and compatible osmolytes in Canola (Brassica Napus L). Acta Biol Crac Ser Bot 61:29–42. https://doi.org/10.24425/abcsb.2019.127736

Article  CAS  Google Scholar 

Jahani M, Khavari-Nejad RA, Mahmoodzadeh H, Saadatmand S (2020) Effects of cobalt oxide nanoparticles (Co3O4 NPs) on ion leakage, total phenol, antioxidant enzymes activities and cobalt accumulation in Brassica napus L. not. Bot Horti Agrobot Cluj Napoca 48:1260–1275. https://doi.org/10.15835/nbha48311766

Article  CAS  Google Scholar 

Jeyasubramanian K, Thoppey UUG, Hikku GS, Selvakumar N, Subramania A, Krishnamoorthy K (2016) Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSC Adv 6:15451. https://doi.org/10.1039/C5RA23425E

Article  CAS  Google Scholar 

Jo SM, Ayukawa Y, Yun SH, Komatsu K, Arie T (2018) A putative RNA silencing component protein FoQde-2 is involved in virulence of the tomato wilt fungus Fusarium oxysporum f. sp. lycopersici. J Gen Plant Pathol 84:395–398. https://doi.org/10.1007/s10327-018-0800-9

Article  CAS  Google Scholar 

Kasana RC, Panwar NR, Kaul RK, Kumar P (2017) Biosynthesis and effects of copper nanoparticles on plants. Environ Chem Lett 15:233–240.

留言 (0)

沒有登入
gif