Metabolic engineering of Bacillus subtilis toward the efficient and stable production of C30-carotenoids

Abdallah II, Xue D, Pramastya H, van Merkerk R, Setroikromo R, Quax WJ (2020) A regulated synthetic operon facilitates stable overexpression of multigene terpenoid pathway in Bacillus subtilis. J Ind Microbiol Biotechnol 47(2):243–249. https://doi.org/10.1007/s10295-019-02257-4

Article  CAS  PubMed  Google Scholar 

Altenbuchner J (2016) Editing of the Bacillus subtilis genome by the CRISPR-Cas9 System. Appl Environ Microbiol 15(17):5421–5427. https://doi.org/10.1128/AEM.01453-16

Article  CAS  Google Scholar 

Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids Handbook. Birkhäuser Verlag

Cardoso LAC, Karp SG, Vendruscolo F, Kanno KYF, Zoz LIC, Carvalho JC (2017) Biotechnological Production of Carotenoids and their applications in Food and Pharmaceutical Products. Carotenoids. InTech. doi:https://doi.org/10.5772/67725

Chae HS, Kim K-H, Kim SC, Lee PC (2010) Strain-dependent carotenoid productions in metabolically engineered Escherichia coli. Appl Biochem Biotechnol 162(8):2333–2344. https://doi.org/10.1007/s12010-010-9006-0

Article  CAS  PubMed  Google Scholar 

Earl AM, Losick R, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol 16(6):269–275. https://doi.org/10.1016/j.tim.2008.03.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng X, Hu Y, Zheng Y, Zhu W, Li K, Huang CH, Ko TP, Ren F, Chan HC, Nega M, Bogue S, López D, Kolter R, Götz F, Guo RT, Oldfield E (2014) Structural and functional analysis of Bacillus subtilis YisP reveals a role of its product in biofilm production. Chem Biol 21(11):1557–1563. https://doi.org/10.1016/j.chembiol.2014.08.018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrando J, Filluelo O, Zeigler DR, Picart P (2023) Barriers to simultaneous multilocus integration in Bacillus subtilis tumble down: development of a straightforward screening method for the colorimetric detection of one-step multiple gene insertion using the CRISPR-Cas9 system. Microb Cell Fact 22:21. https://doi.org/10.1186/s12934-023-02032-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furubayashi M, Li L, Katabami A, Saito K, Umeno D (2014) Construction of carotenoid biosynthetic pathways using squalene synthase. FEBS Lett 588(3):436–442. https://doi.org/10.1016/j.febslet.2013.12.003

Article  CAS  PubMed  Google Scholar 

García-Moyano A, Larsen Ø, Gaykawad S, Christakou E, Boccadoro C, Puntervoll P, Bjerga GEK (2020) Fragment Exchange plasmid tools for CRISPR/Cas9-Mediated gene integration and protease production in Bacillus subtilis. Appl Environ Microbiol 87(1):e02090–e02020. https://doi.org/10.1128/AEM.02090-20

Article  PubMed  PubMed Central  Google Scholar 

Guan Z, Xue D, Abdallah II, Dijkshoorn L, Setroikromo R, Lv G, Quax WJ (2015) Metabolic engineering of Bacillus subtilis for terpenoid production. Appl Microbiol Biotechnol 99(22):9395–9406. https://doi.org/10.1007/s00253-015-6950-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hartz P, Milhim M, Trenkamp S, Bernhardt R, Hannemann F (2018) Characterization and engineering of a carotenoid biosynthesis operon from Bacillus megaterium. Metab Eng 49:47–58. https://doi.org/10.1016/j.ymben.2018.07.017

Article  CAS  PubMed  Google Scholar 

Huang K, Zhang T, Jiang B, Yan X, Mu W, Miao M (2017) Overproduction of Rummeliibacillus pycnus arginase with multi-copy insertion of the argr-pyc 23 cassette into the Bacillus subtilis chromosome. Appl Microbiol Biotechnol 101:6039–6048. https://doi.org/10.1007/s00253-017-8355-9

Article  CAS  PubMed  Google Scholar 

Ishiwa H, Shibahara H (1985) New shuttle vectors for Escherichia coli and Bacillus subtilis. Jpn J Genet 60:235–243. https://doi.org/10.1016/0378-1119(84)90161-6

Article  Google Scholar 

Jing Y, Liu H, Xu W, Yang Q (2017) Amelioration of the DSS-induced colitis in mice bypretreatment with 4,4′-diaponeurosporene-producing Bacillus subtilis. Exp Ther Med 14(6):6069–6073. https://doi.org/10.3892/etm.2017.5282

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jing Y, Liu H, Xu W, Yang Q (2019) 4,4′-Diaponeurosporene-producing Bacillus subtilis promotes the development of the mucosal immune system of the piglet gut. Anat Rec (Hoboken) 302:1800–1807. https://doi.org/10.1002/ar.24102

Article  CAS  PubMed  Google Scholar 

Julsing MK, Rijpkema M, Woerdenbag HJ, Quax WJ, Kayser O (2007) Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis. Appl Microbiol Biotechnol 75(6):1377–1384. https://doi.org/10.1007/s00253-007-0953-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim J, Kong MK, Lee SY, Lee PC (2010) Carbon sources-dependent carotenoid production in metabolically engineered Escherichia coli. World J Microbiol Biotechnol 26(12):2231–2239. https://doi.org/10.1007/s11274-010-0408-5

Article  CAS  Google Scholar 

Kim M, Jung DH, Hwang CY, Siziya IN, Park YS, Seo MJ (2022) 4,4’-Diaponeurosporene production as C30 carotenoid with antioxidant activity in recombinant Escherichia coli. Appl Biochem Biotechnol Sep 6. https://doi.org/10.1007/s12010-022-04147-5

Kuzma J, Nemecek-Marshall M, Pollock WH, Fall R (1995) Bacteria produce the volatile hydrocarbon isoprene. Curr Microbiol 30(2):97–103. https://doi.org/10.1007/BF00294190

Article  CAS  PubMed  Google Scholar 

Lim HN, Lee Y, Hussein R (2011) Fundamental relationship between operon organization and gene expression. Proc Natl Acad Sci U S A 108(26):10626–10631. https://doi.org/10.1073/pnas.1105692108

Article  PubMed  PubMed Central  Google Scholar 

Liu H, Xu W, Chang X, Qin T, Yin Y, Yang Q (2016) 4,4’-diaponeurosporene, a C30 carotenoid, effectively activates dendritic cells via CD36 and NF-kappaB signaling in a ROS independent manner. Oncotarget 7(27):40978–40991. https://doi.org/10.18632/oncotarget.9800

Article  PubMed  PubMed Central  Google Scholar 

Liu H, Xu W, Yu Q, Yang Q (2017) 4,4’-Diaponeurosporene-producing Bacillus subtilis increased mouse resistance against Salmonella typhimurium infection in a CD36-Dependent manner. Front Immunol 8:483. https://doi.org/10.3389/fimmu.2017.00483

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marshall JH, GJ Wilmoth (1981) Pigments of Staphylococcus aureus, a series of triterpenoid carotenoids. J Bacteriol 147:900–913. https://doi.org/10.1128/jb.147.3.900-913.1981

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mignon C, Sodoyer R, Werle B (2015) Antibiotic-free selection in biotherapeutics: now and forever. Pathogens 4(2):157–181. https://doi.org/10.3390/pathogens4020157

Article  PubMed  PubMed Central  Google Scholar 

Moser S, Pichler H (2019) Identifying and engineering the ideal microbial terpenoid production host. Appl Microbiol Biotechnol 103(14):5501–5516. https://doi.org/10.1007/s00253-019-09892-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pelz A, Wieland KP, Putzbach K, Hentschel P, Albert K, Götz F (2005) Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J Biol Chem 280:32493–32498. https://doi.org/10.1074/jbc.M505070200

Article  CAS  PubMed  Google Scholar 

Popp PF, Dotzler M, Radeck J, Bartels J, Mascher T (2017) The Bacillus BioBrick Box 2.0: expanding the genetic toolbox for the standardized work with Bacillus subtilis. Sci Rep 7(1):15058. https://doi.org/10.1038/s41598-017-15107-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17. https://doi.org/10.1139/w03-076

Article  CAS  PubMed  Google Scholar 

Siziya IN, Hwang CY, Seo MJ (2022) Antioxidant potential and capacity of microorganism-sourced C30 Carotenoids-A review. Antioxid (Basel) 11(10):1963. https://doi.org/10.3390/antiox11101963

Article  CAS  Google Scholar 

Song Y, Nikoloff JM, Fu G, Chen J, Li Q, Xie N, Zheng P, Sun J, Zhang D (2016) Promoter screening from Bacillus subtilis in various Conditions Hunting for Synthetic Biology and Industrial Applications. PLoS ONE 11(7):e0158447. https://doi.org/10.1371/journal.pone.0158447

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song Y, He S, Abdallah II, Jopkiewicz A, Setroikromo R, van Merkerk R, Tepper PG, Quax WJ (2021) Engineering of multiple modules to improve Amorphadiene production in Bacillus subtilis using CRISPR-Cas9. J Agric Food Chem 69(16):4785–4794. https://doi.org/10.1021/acs.jafc.1c00498

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su Y, Liu C, Fang H, Zhang D (2020) Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact 19(1):173. https://doi.org/10.1186/s12934-020-01436-8

Article  PubMed  PubMed Central  Google Scholar 

Takaichi S (2000) Characterization of carotenes in a combination of a C(18) HPLC column with isocratic elution and absorption spectra with a photodiode-array detector. Photosynth Res 65(1):93. https://doi.org/10.1023/A:1006445503030

Article  CAS  PubMed  Google Scholar 

Takaichi S, Inoue K, Akaike M, Kobayashi M, Oh-oka H, Madigan MY (1997) The major carotenoid in all known species of heliobacteria is the C30 carotenoid 4,4’-diaponeurosporene, not neurosporene. Arch Microbiol 168:277–281. https://doi.org/10.1007/s002030050499

Article  CAS  PubMed  Google Scholar 

Takemura M, Takagi C, Aikawa M, Araki K, Choi SK, Itaya M, Shindo K, Misawa N (2021) Heterologous production of novel and rare C30-carotenoids using Planococcus carotenoid biosynthesis genes. Microb Cell Fact 20(1):194. https://doi.org/10.1186/s12934-021-01683-3

Article 

留言 (0)

沒有登入
gif