Precision native polysaccharides from living polymerization of anhydrosugars

Varki, A. et al. Essentials of Glycobiology 2nd edn (Cold Spring Harbor Laboratory Press, 2009).

Ragauskas, A. J. et al. The path forward for biofuels and biomaterials. Science 311, 484–489 (2006).

Article  CAS  PubMed  Google Scholar 

Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).

Article  CAS  PubMed  Google Scholar 

Dumitriu, S. Polysaccharides: Structural Diversity and Functional Versatility 2nd edn (Marcel Dekker, 2005).

Fittolani, G., Tyrikos-Ergas, T., Vargová, D., Chaube, M. A. & Delbianco, M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J. Org. Chem. 17, 1981–2025 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kadokawa, J. Precision polysaccharide synthesis catalyzed by enzymes. Chem. Rev. 111, 4308–4345 (2011).

Article  CAS  PubMed  Google Scholar 

Zhu, Q. et al. Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus. Nat. Commun. 11, 4142–4148 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guberman, M. & Seeberger, P. H. Automated glycan assembly: a perspective. J. Am. Chem. Soc. 141, 5581–5592 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panza, M., Pistorio, S. G., Stine, K. J. & Demchenko, A. V. Automated chemical oligosaccharide synthesis: novel approach to traditional challenges. Chem. Rev. 118, 8105–8150 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao, R. X. & Grinstaff, M. W. Chemical synthesis of polysaccharides and polysaccharide mimetics. Prog. Polym. Sci. 74, 78–116 (2017).

Article  CAS  Google Scholar 

Saxon, D. J. et al. Architectural control of isosorbide-based polyethers via ring-opening polymerization. J. Am. Chem. Soc. 141, 5107–5111 (2019).

Article  CAS  PubMed  Google Scholar 

McGuire, T. M. et al. Control of crystallinity and stereocomplexation of synthetic carbohydrate polymers from d- and l-xylose. Angew. Chem. Int. Ed. 60, 4524–4528 (2021).

Article  CAS  Google Scholar 

Stubbs, C. J. et al. Sugar-based polymers with stereochemistry-dependent degradability and mechanical properties. J. Am. Chem. Soc. 144, 1243–1250 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Debsharma, T., Yagci, Y. & Schlaad, H. Cellulose-derived functional polyacetal by cationic ring-opening polymerization of levoglucosenyl methyl ether. Angew. Chem. Int. Ed. 58, 18492–18495 (2019).

Article  CAS  Google Scholar 

Mikami, K. et al. Polycarbonates derived from glucose via an organocatalytic approach. J. Am. Chem. Soc. 135, 6826–6829 (2013).

Article  CAS  PubMed  Google Scholar 

Dane, E. L. & Grinstaff, M. W. Poly-amido-saccharides: synthesis via anionic polymerization of a β-lactam sugar monomer. J. Am. Chem. Soc. 134, 16255–16264 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruckel, E. R. & Schuerch, C. Preparation of high polymers from 1,6-anhydro-2,3,4-tri-O-substituted β-d-glucopyranose. J. Org. Chem. 31, 2233–2239 (1966).

Article  CAS  Google Scholar 

Aoshima, S. & Kanaoka, S. A renaissance in living cationic polymerization. Chem. Rev. 109, 5245–5287 (2009).

Article  CAS  PubMed  Google Scholar 

Porwal, M. K. et al. Stereoregular functionalized polysaccharides via cationic ring-opening polymerization of biomass derived levoglucosan. Chem. Sci. 13, 4512–4522 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abel, B. A., Snyder, R. L. & Coates, G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789 (2021).

Article  CAS  PubMed  Google Scholar 

Uchiyama, M., Satoh, K. & Kamigaito, M. Cationic RAFT polymerization using ppm concentrations of organic acid. Angew. Chem. Int. Ed. 54, 1924–1928 (2015).

Article  CAS  Google Scholar 

Kottisch, V., Michaudel, Q. & Fors, B. P. Cationic polymerization of vinyl ethers controlled by visible light. J. Am. Chem. Soc. 138, 15535–15538 (2016).

Article  CAS  PubMed  Google Scholar 

Nielsen, M. M. & Pedersen, C. M. Catalytic glycosylations in oligosaccharide synthesis. Chem. Rev. 118, 8285–8358 (2018).

Article  CAS  PubMed  Google Scholar 

Yoshida, D. & Yoshida, T. Elucidation of high ring-opening polymerizability of methylated 1,6-anhydro glucose. J. Polym. Sci. A. Polym. Chem 47, 1013–1022 (2009).

Article  CAS  Google Scholar 

Zhu, Q. Q. et al. Structural identification of (1→6)-α-d-glucan, a key responsible for the health benefits of longan, and evaluation of anticancer activity. Biomacromolecules 14, 1999–2003 (2013).

Article  CAS  PubMed  Google Scholar 

Williams, S. J. & Withers, S. G. Glycosyl fluorides in enzymatic reactions. Carbohydr. Res. 327, 27–46 (2000).

Article  CAS  PubMed  Google Scholar 

Stone, B. A., Svensson, B., Collins, M. E. & Rastall, R. A. in Glycoscience 2nd edn (eds Fraser-Reid, B. O., Tatsuta, K. & Thiem, J.) 2325–2375 (Springer, 2008).

Apostolou, I. et al. Murine natural killer cells contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc. Natl. Acad. Sci. USA. 96, 5141–5146 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calin, O., Eller, S. & Seeberger, P. H. Automated polysaccharide synthesis: assembly of a 30mer mannoside. Angew. Chem. Int. Ed. 52, 5862–5865 (2013).

Article  CAS  Google Scholar 

Getzler, Y. D. Y. L. & Coates, G. W. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

Article  Google Scholar 

Shi, C. et al. Design principles for intrinsically circular polymers with tunable properties. Chem 7, 2896–2912 (2021).

Article  CAS  Google Scholar 

Mohadjer Beromi, M. et al. Iron-catalysed synthesis and chemical recycling of telechelic 1,3-enchained oligocyclobutanes. Nat. Chem. 13, 156–162 (2021).

Article  CAS  PubMed  Google Scholar 

Sathe, D. et al. Olefin metathesis-based chemically recyclable polymers enabled by fused-ring monomers. Nat. Chem. 13, 743–750 (2021).

Article  CAS  PubMed  Google Scholar 

Hong, M. & Chen, E. Y.-X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem. 8, 42–49 (2016).

Article  CAS  PubMed  Google Scholar 

Zhu, J. B., Watson, E. M., Tang, J. & Chen, E. Y.-X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

Article  CAS  PubMed  Google Scholar 

Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021).

Article  PubMed  Google Scholar 

Yuan, J. S. et al. 4-Hydroxyproline-derived sustainable polythioesters: controlled ring-opening polymerization, complete recyclability, and facile functionalization. J. Am. Chem. Soc. 141, 4928–4935 (2019).

Article  CAS  PubMed  Google Scholar 

Christensen, P. R., Scheuermann, A. M., Loeffler, K. E. & Helms, B. A. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem. 11, 442–448 (2019).

Article  CAS  PubMed  Google Scholar 

Song, Y. et al. Advancing the development of highly-functionalizable glucose-based polycarbonates by tuning of the glass transition temperature. J. Am. Chem. Soc. 140, 16053–16057 (2018).

Article  CAS  PubMed  Google Scholar 

Sangroniz, A. et al. Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nat. Commun. 10, 3559–3565 (2019).

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif