The interplay of cells, polymers, and vascularization in three-dimensional lung models and their applications in COVID-19 research and therapy

Shi J, et al. Challenges of drug development during the COVID-19 pandemic: Key considerations for clinical trial designs. Br J Clin Pharmacol. 2021;87(5):2170–85. https://doi.org/10.1111/bcp.14629.

Article  CAS  PubMed  Google Scholar 

Hu B, Guo H, Zhou P, Shi Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–54. https://doi.org/10.1038/s41579-020-00459-7.

Article  CAS  PubMed  Google Scholar 

Duval K, et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology. 2017;32:266–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Booij TH, Price LS, Danen EHJ. 3D cell-based assays for drug screens: challenges in imaging, image analysis, and high-content analysis. SLAS Discov. 2019;24:615–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steele VE, Lubet RA. The use of animal models for cancer chemoprevention drug development. Semin Oncol. 2010;37(4):327–38. https://doi.org/10.1053/j.seminoncol.2010.05.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antoni D, Burckel H, Josset E, Noel G. Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci. 2015;16(12):5517–27. https://doi.org/10.3390/ijms16035517.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qian X, Song H, Ming G-L. Brain organoids: advances, applications and challenges. Development. 2019;146(8):dev166074. https://doi.org/10.1242/dev.166074.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen HI, Song H, Ming G-L. Applications of human brain organoids to clinical problems. Dev Dyn. 2019;248(1):53–64. https://doi.org/10.1002/dvdy.24662.

Article  PubMed  Google Scholar 

Russell WMS, Burch RL. The principles of humane experimental technique. The principles of humane experimental technique. London: Methuen & Co. Ltd. (1959)

Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng. 2003;83:173–80.

Article  CAS  PubMed  Google Scholar 

Ryu NE, Lee SH, Park H. Spheroid culture system methods and applications for mesenchymal stem cells. Cells. 2019;8:1620.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prytherch Z, Job C, Marshall H, Oreffo V, Foster M, BéruBé K. Tissue-specific stem cell differentiation in an in vitro airway model. Macromol Biosci. 2011;11:e66417.

Google Scholar 

Chua RL, et al. Cross-talk between the airway epithelium and activated immune cells defines severity in COVID-19 (2020).

He B, Chen G, Zeng Y. REVIEW Three-dimensional cell culture models for investigating human viruses. Virol Sin. 2016;31:363–79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benali R, Chevillard M, Zahm JM, Hinnrasky J, Klossek JM, Puchelle E. Tubule formation and functional differentiation by human epithelial respiratory cells cultured in a three-dimensional collagen matrix.

Vinci M, et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 2012;10:29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim SJ, et al. Hydrogels with an embossed surface: an all-in-one platform for mass production and culture of human adipose-derived stem cell spheroids. Biomaterials. 2019;188:198–212.

Article  CAS  PubMed  Google Scholar 

Raredon MSB, Ghaedi M, Calle EA, Niklason LE. A rotating bioreactor for scalable culture and differentiation of respiratory epithelium. Cell Med. 2015;7:109–21.

Article  PubMed  Google Scholar 

Timmins NE, Nielsen LK. Generation of multicellular tumor spheroids by the hanging-drop method. Methods Mol Med. 2007;140:141–51.

Article  CAS  PubMed  Google Scholar 

Patra B, Peng C-C, Liao W-H, Lee C-H, Tung Y-C. Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device OPEN. Nature Publishing Group (2016)

Ivascu A, Kubbies M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis (2006)

Liu FF, et al. Hanging drop: an in vitro air toxic exposure model using human lung cells in 2D and 3D structures. J Hazard Mater. 2013;261:701–10.

Article  CAS  PubMed  Google Scholar 

Delgado O, et al. Multipotent capacity of immortalized human bronchial epithelial cells. PLoS ONE. 2011;6:e22023.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jedrych E, et al. Evaluation of cytotoxic effect of 5-fluorouracil on human carcinoma cells in microfluidic system. Sens Actuators B Chem. 2011;160:1544–51.

Article  CAS  Google Scholar 

Zuchowska A, Jastrzebska E, Chudy M, Dybko A, Brzozka Z. 3D lung spheroid cultures for evaluation of photodynamic therapy (PDT) procedures in microfluidic Lab-on-a-Chip system. Anal Chim Acta. 2017;990:110–20.

Article  CAS  PubMed  Google Scholar 

Kimura J, Deutsch GH. Key mechanisms of early lung development. Pediatr Dev Pathol. 2007;10:335–47.

Article  CAS  PubMed  Google Scholar 

Hagiwara M, Nakase I. Epidermal growth factor induced macropinocytosis directs branch formation of lung epithelial cells. Biochem Biophys Res Commun. 2018;507(1):297–303. https://doi.org/10.1016/j.bbrc.2018.11.028.

Article  CAS  PubMed  Google Scholar 

Horani A, Nath A, Wasserman MG, Huang T, Brody SL. Rho-associated protein kinase inhibition enhances airway epithelial basal-cell proliferation and lentivirus transduction. Am J Respir Cell Mol Biol. 2013;49:341–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Butler CR, et al. Rapid expansion of human epithelial stem cells suitable for airway tissue engineering. Am J Respir Crit Care Med. 2016;194(2):156–68. https://doi.org/10.1164/rccm.201507-1414oc.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130:601–10.

Article  CAS  PubMed  Google Scholar 

Kumari N, Bhargava A, Rath SN. T-type calcium channel antagonist, TTA-A2 exhibits anti-cancer properties in 3D spheroids of A549, a lung adenocarcinoma cell line. Life Sci. 2020;260:118291.

Article  CAS  PubMed  Google Scholar 

Saleh F, Harb A, Soudani N, Zaraket H. A three-dimensional A549 cell culture model to study respiratory syncytial virus infections. J Infect Public Health. 2020;13:1142–7.

Article  PubMed  PubMed Central  Google Scholar 

Abdul L, et al. Deep-LUMEN assay-human lung epithelial spheroid classification from brightfield images using deep learning. Lab Chip. 2020;20:4623–31.

Article  CAS  PubMed  Google Scholar 

Carterson AJ, et al. A549 lung epithelial cells grown as three-dimensional aggregates: Alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. Infect Immun. 2005;73:1129–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Riet S et al. In vitro modelling of alveolar repair at the air-liquid interface using alveolar epithelial cells derived from human induced pluripotent stem cells. Sci Rep. 10(1) (2020). https://doi.org/10.1038/s41598-020-62226-1.

Shiraishi K, Nakajima T, Shichino S, Deshimaru S, Matsushima K, Ueha S. In vitro expansion of endogenous human alveolar epithelial type II cells in fibroblast-free spheroid culture. Biochem Biophys Res Commun. 2019;515:579–85.

Article  CAS  PubMed  Google Scholar 

Dinh PUC, et al. Derivation of therapeutic lung spheroid cells from minimally invasive transbronchial pulmonary biopsies. Respir Res. 2017;18:1–11.

Article  Google Scholar 

Rock JR, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA. 2009;106:12771–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schoch KG, Lori A, Burns KA, Eldred T, Olsen JC, Randell SH. A subset of mouse tracheal epithelial basal cells generates large colonies in vitro. Am J Physiol Lung Cell Mol Physiol. 2004;286:631–42.

Article  Google Scholar 

Barkauskas CE, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Investig. 2013;123:3025–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cutz E. Neuroendocrine cells of the lung an overview of morphologic characteristics and development. Exp Lung Res. 1982;3:185–208.

Article  CAS  PubMed  Google Scholar 

Lee JH, et al. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell. 2014;156:440–55.

Article 

留言 (0)

沒有登入
gif