Sperm-borne microRNA-34c regulates maternal mRNA degradation and preimplantation embryonic development in mice

Salas-Huetos A, Blanco J, Vidal F, Mercader JM, Garrido N, Anton E. New insights into the expression profile and function of micro-ribonucleic acid in human spermatozoa. Fertil Steril. 2014;102(1):213–22.

Article  CAS  PubMed  Google Scholar 

Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA, Network RM. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update. 2013;19(6):604–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update. 2013;19(6):604–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan SQ, Schuster A, Tang C, Yu T, Ortogero N, Bao JQ, et al. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development. 2016;143(4):635–47.

CAS  PubMed  PubMed Central  Google Scholar 

Chen Q, Yan W, Duan E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet. 2016;17(12):733–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gannon JR, Emery BR, Jenkins TG, Carrell DT. The sperm Epigenome: implications for the embryo. Adv Exp Med Biol. 2014;791:53–66.

Article  PubMed  Google Scholar 

Meltzer PS. Cancer genomics: small RNAs with big impacts. Nature. 2005;435(7043):745–6.

Article  CAS  PubMed  Google Scholar 

Liu WM, Pang RTK, Chiu PCN, Wong BPC, Lao KQ, Lee KF, et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. P Natl Acad Sci USA. 2012;109(2):490–4.

Article  CAS  Google Scholar 

Alves MBR, de Arruda RP, De Bem THC, Florez-Rodriguez SA, de Sa MF, Belleannee C et al. Sperm-borne miR-216b modulates cell proliferation during early embryo development via K-RAS.Sci Rep-Uk. 2019;9.

Wang B, Wang YS, Zhang M, Du Y, Zhang YJ, Xing XP, et al. MicroRNA-34c expression in Donor cells influences the early development of somatic cell nuclear transfer bovine embryos. Cell Reprogram. 2014;16(6):418–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui L, Fang L, Shi BW, Qiu SQ, Ye YH. Spermatozoa micro ribonucleic acid-34c level is correlated with intracytoplasmic sperm injection outcomes. Fertil Steril. 2015;104(2):312–.

Article  CAS  PubMed  Google Scholar 

Li HP, Li LJ, Lin CP, Hu MH, Liu XZ, Wang LY, et al. Decreased miR-149 expression in sperm is correlated with the quality of early embryonic development in conventional in vitro fertilization. Reprod Toxicol. 2021;101:28–32.

Article  CAS  PubMed  Google Scholar 

Shi SL, Shi QY, Sun YP. The effect of sperm miR-34c on human embryonic development kinetics and clinical outcomes.Life Sci. 2020;256.

Xu H, Wang X, Wang ZK, Li JH, Xu ZM, Miao MH et al. MicroRNA expression profile analysis in sperm reveals hsa-mir-191 as an auspicious omen of in vitro fertilization. Bmc Genomics. 2020;21(1).

Bouhallier F, Allioli N, Lavial F, Chalmel F, Perrard MH, Durand P, et al. Role of miR-34c microRNA in the late steps of spermatogenesis. RNA. 2010;16(4):720–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McIver SC, Roman SD, Nixon B, McLaughlin EA. miRNA and mammalian male germ cells. Hum Reprod Update. 2012;18(1):44–59.

Article  CAS  PubMed  Google Scholar 

Abu-Halima M, Hammadeh M, Backes C, Fischer U, Leidinger P, Lubbad AM, et al. Panel of five microRNAs as potential biomarkers for the diagnosis and assessment of male infertility. Fertil Steril. 2014;102(4):989–U455.

Article  CAS  PubMed  Google Scholar 

Momeni A, Najafipour R, Hamta A, Jahani S, Moghbelinejad S. Expression and methylation pattern of hsa-miR-34 family in sperm samples of infertile men. Reprod Sci. 2020;27(1):301–8.

Article  CAS  PubMed  Google Scholar 

Wang C, Yang CH, Chen X, Yao B, Yang C, Zhu C, et al. Altered Profile of seminal plasma MicroRNAs in the molecular diagnosis of male infertility. Clin Chem. 2011;57(12):1722–31.

Article  CAS  PubMed  Google Scholar 

Yuan S, Tang C, Zhang Y, Wu J, Bao J, Zheng H, et al. mir-34b/c and mir-449a/b/c are required for spermatogenesis, but not for the first cleavage division in mice. Biol Open. 2015;4(2):212–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qin H, Qu P, Hu H, Cao W, Liu H, Zhang Y, et al. Sperm-borne small RNAs improve the developmental competence of pre-implantation cloned embryos in rabbit. Zygote (Cambridge England). 2021;29(5):331–6.

Article  CAS  PubMed  Google Scholar 

Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts. Development. 2009;136(18):3033–42.

Article  CAS  PubMed  Google Scholar 

Sha QQ, Zhang J, Fan HY. A story of birth and death: mRNA translation and clearance at the onset of maternal-to-zygotic transition in mammals. Biol Reprod. 2019;101(3):579–90.

Article  PubMed  Google Scholar 

Rosa A, Brivanlou AH. Role of MicroRNAs in zygotic genome activation: modulation of mRNA during embryogenesis. Methods in molecular biology. (Clifton NJ). 2017;1605:31–43.

CAS  Google Scholar 

Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, et al. TBtools: an integrative Toolkit developed for interactive analyses of big Biological Data. Mol Plant. 2020;13(8):1194–202.

Article  CAS  PubMed  Google Scholar 

Sha QQ, Zheng W, Wu YW, Li S, Guo L, Zhang SP, et al. Dynamics and clinical relevance of maternal mRNA clearance during the oocyte-to-embryo transition in humans. Nat Commun. 2020;11(1):4917.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang JM, Hou WB, Du JW, Zong M, Zheng KL, Wang WJ, et al. Argonaute 2 is a key regulator of maternal mRNA degradation in mouse early embryos. Cell Death Discov. 2020;6(1):133.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, Zheng P, Dean J. Maternal control of early mouse development. Development. 2010;137(6):859–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyanari Y, Torres-Padilla ME. Epigenetic regulation of reprogramming factors towards pluripotency in mouse preimplantation development. Curr Opin Endocrinol. 2010;17(6):500–6.

Article  CAS  Google Scholar 

Chang SH, Su YC, Chang ME, Chen JA. MicroRNAs mediate precise control of spinal interneuron populations to exert delicate sensory-to-motor outputs. Elife. 2021;10. e63768

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schier AF. The maternal-zygotic transition: death and birth of RNAs. Science. 2007;316(5823):406–7.

Article  CAS  PubMed  Google Scholar 

Nilsen A, Fusser M, Greggains G, Fedorcsak P, Klungland A. ALKBH4 Depletion in Mice Leads to Spermatogenic Defects. Plos One. 2014;9(8).

Worrad DM, Schultz RM. Regulation of gene expression in the preimplantation mouse embryo: temporal and spatial patterns of expression of the transcription factor Sp1. Mol Reprod Dev. 1997;46(3):268–77.

Article  CAS  PubMed  Google Scholar 

Worrad DM, Ram PT, Schultz RM. Regulation of gene-expression in the mouse oocyte and early preimplantation embryo - developmental-changes in Sp1 and Tata Box-Binding protein, tbp. Development. 1994;120(8):2347–57.

Article  CAS  PubMed  Google Scholar 

Laugesen A, Helin K. Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell. 2014;14(6):735–51.

Article  CAS  PubMed  Google Scholar 

Jimenez R, Melo EO, Davydenko O, Ma J, Mainigi M, Franke V, et al. Maternal SIN3A regulates reprogramming of Gene expression during mouse preimplantation development. Biol Reprod. 2015;93(4):89.

Article  PubMed  PubMed Central  Google Scholar 

Xue ZG, Huang K, Cai CC, Cai LB, Jiang CY, Feng Y, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500(7464):593–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao PP, Li S, Wang HA, Dang YN, Wang LF, Liu T, et al. Sin3a regulates the developmental progression through morula-to-blastocyst transition via Hdac1. Faseb J. 2019;33(11):12541–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ispada J, da Fonseca AM, de Lima CB, dos Santos EC, Fontes PK, Nogueira MFG, et al. Tricarboxylic acid cycle metabolites as mediators of DNA methylation reprogramming in bovine preimplantation embryos. Int J Mol Sci. 2020;21(18):6868.

Article  CAS 

留言 (0)

沒有登入
gif