Maternal diet supplementation with high-docosahexaenoic-acid canola oil, along with arachidonic acid, promotes immune system development in allergy-prone BALB/c mouse offspring at 3 weeks of age

Saavedra JM, Dattilo AM (2017) Nutrition in the first 1000 days of life: society’s greatest opportunity. Early nutrition and long-term health. Elsevier. https://doi.org/10.1016/b978-0-08-100168-4.00025-2

Chapter  Google Scholar 

Calder PC, Krauss-Etschmann S, de Jong EC, Dupont C, Frick JS, Frokiaer H, Heinrich J, Garn H, Koletzko S, Lack G, Mattelio G, Renz H, Sangild PT, Schrezenmeir J, Stulnig TM, Thymann T, Wold AE, Koletzko B (2006) Early nutrition and immunity—progress and perspectives. Br J Nutr 96(4):774–790

CAS  PubMed  Google Scholar 

Kelly D, Coutts AGP (2000) Early nutrition and the development of immune function in the neonate. Proc Nutr Soc 59(2):177–185. https://doi.org/10.1017/s0029665100000197

Article  CAS  PubMed  Google Scholar 

Basha S, Surendran N, Pichichero M (2014) Immune responses in neonates. Expert Rev Clin Immunol 10(9):1171–1184. https://doi.org/10.1586/1744666X.2014.942288

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pérez-Cano FJ, Castellote C, González-Castro AM, Pelegrí C, Castell M, Franch À (2005) Developmental changes in intraepithelial T lymphocytes and NK cells in the small intestine of neonatal rats. Pediatr Res 58:885–891. https://doi.org/10.1203/01.pdr.0000182187.88505.49

Article  PubMed  Google Scholar 

Pérez-Cano FJ, Castellote C, Marín-Gallén S, González-Castro A, Franch À, Castell M (2007) Phenotypic and functional characteristics of rat spleen lymphocytes during suckling. Dev Comp Immunol 31(12):1264–1277. https://doi.org/10.1016/j.dci.2007.03.004

Article  CAS  PubMed  Google Scholar 

Pérez-Cano FJ, Franch Á, Castellote C, Castell M (2012) The suckling rat as a model for immunonutrition studies in early life. Clin Dev Immunol. https://doi.org/10.1155/2012/537310

Article  PubMed  PubMed Central  Google Scholar 

Drutman SB, Kendall JC, Trombetta ES (2012) Inflammatory spleen monocytes can upregulate CD11c expression without converting into dendritic cells. J Immunol 188(8):3603–3610. https://doi.org/10.4049/jimmunol.1102741

Article  CAS  PubMed  Google Scholar 

Prescott SL (2003) Early origins of allergic disease: a review of processes and influences during early immune development. Curr Opin Allergy Clin Immunol 3(2):125–132. https://doi.org/10.1097/01.all.0000064776.57552.32

Article  CAS  PubMed  Google Scholar 

Wilson CB, Kollmann TR (2008) Induction of antigen-specific immunity in human neonates and infants. Nestle Nutr Workshop Ser Pediatr 61:183–195. https://doi.org/10.1159/000113493

Article  Google Scholar 

Zaghouani H, Hoeman CM, Adkins B (2009) Neonatal immunity: faulty T-helpers and the shortcomings of dendritic cells. Trends Immunol 30(12):585–591. https://doi.org/10.1016/j.it.2009.09.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raphael I, Nalawade S, Eagar TN, Forsthuber TG (2015) T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74(1):5–17. https://doi.org/10.1016/j.cyto.2014.09.011

Article  CAS  PubMed  Google Scholar 

Van Der Velden VHJ, Laan MP, Baert MRM, De Waal MR, Neijens HJ, Savelkoul HFJ (2001) Selective development of a strong Th2 cytokine profile in high-risk children who develop atopy: risk factors and regulatory role of IFN-γ, IL-4 and IL-10. Clin Exp Allergy 31(7):997–1006. https://doi.org/10.1046/j.1365-2222.2001.01176.x

Article  PubMed  Google Scholar 

Kim W, Khan NA, McMurray DN, Prior IA, Wang N, Chapkin RS (2010) Regulatory activity of polyunsaturated fatty acids in T cell signaling. Prog Lipid Res 49(3):250–261. https://doi.org/10.1016/j.plipres.2010.01.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calder PC (2008) The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot Essent Fatty Acids 79(3):101–108. https://doi.org/10.1016/j.plefa.2008.09.016

Article  CAS  PubMed  Google Scholar 

Field CJ, Clandinin MT, Van Aerde JE (2001) Polyunsaturated fatty acids and T cell function: implications for the neonate. Lipids 36(9):1025–1032. https://doi.org/10.1007/s11745-001-0813-6

Article  CAS  PubMed  Google Scholar 

Peterson LD, Jeffery NM, Thies F, Sanderson P, Newsholme EA, Calder PC (1998) Eicosapentaenoic and docosahexaenoic acids alter rat spleen leukocyte fatty acid composition and prostaglandin E 2 production but have different effects on lymphocyte functions and cell-mediated immunity. Lipids. https://doi.org/10.1007/s11745-998-0193-y

Article  PubMed  Google Scholar 

Clausen M, Jonasson K, Keil T, Beyer K, Sigurdardottir ST (2018) Fish oil in infancy protects against food allergy in Iceland—results from a birth cohort study. Allergy 73(6):1305–1312. https://doi.org/10.1111/all.13385

Article  CAS  PubMed  Google Scholar 

Nagakura T, Matsuda S, Shichijyo K, Sugimoto H, Hata K (2000) Dietary supplementation with fish oil rich in ω-3 polyunsaturated fatty acids in children with bronchial asthma. Eur Respir J 16(5):861–865. https://doi.org/10.1183/09031936.00.16586100

Article  CAS  PubMed  Google Scholar 

Kull I, Bergström A, Lilja G, Pershagen G, Wickman M (2006) Fish consumption during the first year of life and development of allergic diseases during childhood. Allergy 61(8):1009–1015. https://doi.org/10.1111/j.1398-9995.2006.01115.x

Article  CAS  PubMed  Google Scholar 

Alm B, Aberg N, Erdes L, Mollborg P, Pettersson R, Norvenius SG, Goksor E, Wennergren G (2009) Early introduction of fish decreases the risk of eczema in infants. Arch Dis Child 94(1):11–15. https://doi.org/10.1136/adc.2008.140418

Article  CAS  PubMed  Google Scholar 

Furuhjelm C, Jenmalm MC, Fälth-Magnusson K, Duchén K (2011) Th1 and Th2 chemokines, vaccine-induced immunity, and allergic disease in infants after maternal ω-3 fatty acid supplementation during pregnancy and lactation. Pediatr Res 69(3):259–264. https://doi.org/10.1203/pdr.0b013e3182072229

Article  CAS  PubMed  Google Scholar 

Richard C, Lewis ED, Field CJ (2016) Evidence for the essentiality of arachidonic and docosahexaenoic acid in the postnatal maternal and infant diet for the development of the infant’s immune system early in life. Appl Physiol Nutr Metab 41(5):461–475. https://doi.org/10.1139/apnm-2015-0660

Article  CAS  PubMed  Google Scholar 

van Goor SA, Dijck-Brouwer DAJ, Hadders-Algra M, Doornbos B, Erwich JJHM, Schaafsma A, Muskiet FAJ (2009) Human milk arachidonic acid and docosahexaenoic acid contents increase following supplementation during pregnancy and lactation. Prostaglandins Leukot Essent Fatty Acids 80(1):65–69. https://doi.org/10.1016/j.plefa.2008.11.002

Article  CAS  PubMed  Google Scholar 

Stables MJ, Gilroy DW (2011) Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res 50(1):35–51. https://doi.org/10.1016/j.plipres.2010.07.005

Article  CAS  PubMed  Google Scholar 

Calder PC (2013) Long chain fatty acids and gene expression in inflammation and immunity. Curr Opin Clin Nutr Metab Care 16:425–433. https://doi.org/10.1097/MCO.0b013e3283620616

Article  CAS  PubMed  Google Scholar 

Calder PC, Kremmyda L-S, Vlachava M, Noakes PS, Miles EA (2010) Is there a role for fatty acids in early life programming of the immune system? Proc Nutr Soc 69(3):373–380. https://doi.org/10.1017/s0029665110001552

Article  CAS  PubMed  Google Scholar 

Richard C, Lewis ED, Goruk S, Field CJ (2016) The content of docosahexaenoic acid in the suckling and the weaning diet beneficially modulates the ability of immune cells to response to stimuli. J Nutr Biochem 35:22–29. https://doi.org/10.1016/j.jnutbio.2016.05.014

Article  CAS  PubMed  Google Scholar 

Richard C, Lewis ED, Goruk S, Field CJ (2016) A dietary supply of docosahexaenoic acid early in life is essential for immune development and the establishment of oral tolerance in female rat offspring. J Nutr 146:2398–2406. https://doi.org/10.3945/jn.116.237149

Article  CAS  PubMed  Google Scholar 

Richard C, Lewis ED, Goruk S, Field CJ (2016) The content of docosahexaenoic acid in the maternal diet differentially affects the immune response in lactating dams and suckled offspring. Eur J Nutr 55(7):2255–2264. https://doi.org/10.1007/s00394-015-1035-6

Article  CAS  PubMed  Google Scholar 

Weise C, Heunemann C, Loddenkemper C, Herz U, van Tol EAF, Worm M (2011) Dietary docosahexaenoic acid in combination with arachidonic acid ameliorates allergen-induced dermatitis in mice. Pediatr Allergy Immunol 22(5):497–504. https://doi.org/10.1111/j.1399-3038.2010.01133.x

Article  PubMed  Google Scholar 

Patel D, Newell M, Goruk S, Richard C, Field CJ (2021) Long chain polyunsaturated fatty acids docosahexaenoic acid and arachidonic acid supplementation in the suckling and the post-weaning diet influences the immune system development of T Helper type-2 bias brown norway rat offspring. Front Nutr. https://doi.org/10.3389/fnut.2021.769293

Article  PubMed  PubMed Central  Google Scholar 

Patel D, Goruk S, Richard C, Field CJ (2022) Combined supplementation with arachidonic and docosahexaenoic acids in t helper type-2 skewed brown Norway rat offspring is beneficial in the induction of oral tolerance toward ovalbumin and immune system development. J Nutr 152(9):2165–2178. https://doi.org/10.1093/jn/nxac118

Article  PubMed  Google Scholar 

Brenna TJ, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM (2007) Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr 85:1457–1464

Article  CAS  PubMed  Google Scholar 

Standard for infant formula and formulas for s

留言 (0)

沒有登入
gif