Non-spherical gold nanoparticles enhanced fluorescence of carbon dots for norovirus-like particles detection

Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD, Koopmans M, Lopman BA. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14:725–30.

Article  Google Scholar 

Inns T, Harris J, Vivancos R, Iturriza-Gomara M, O’Brien S. Community-based surveillance of norovirus disease: a systematic review. BMC Infect Dis. 2017;17:657.

Article  Google Scholar 

Lane D, Husemann E, Holland D, Khaled A. Understanding foodborne transmission mechanisms for norovirus: a study for the UK’s food standards agency. Eur J Oper Res. 2019;275:721–36.

Article  Google Scholar 

Barron LD, Long DA. Molecular light scattering and optical activity Cambridge University Press. J Raman Spectrosc. 1983;14(3):219.

Article  Google Scholar 

Purdie N. Circular dichroism and the conformational analysis of biomolecules edited by Gerald D. Fasman (Brandeis University). J Am Chem Soc. 1996;118(50):12871.

Article  Google Scholar 

Tian X, Fang Y, Sun M. Formation of enhanced uniform chiral fields in symmetric dimer nanostructures. Sci Rep. 2015;5:17534.

Article  Google Scholar 

Wang Y, Qi W, Huang R, Yang X, Wang M, Su R, He Z. Rational design of chiral nanostructures from self-assembly of a ferrocene-modified dipeptide. J Am Chem Soc. 2015;137(24):7869–80.

Article  Google Scholar 

Govorov AO, Gun’ko YK, Slocik JM, Gerard VA, Fan Z, Naik RR. Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects. J Mater Chem. 2011;21(42):16806–18.

Article  Google Scholar 

Yeom B, Zhang H, Zhang H, Park JI, Kim K, Govorov AO, Kotov NA. Chiral plasmonic nanostructures on achiral nanopillars. Nano Lett. 2013;13(11):5277–83.

Article  Google Scholar 

Yan W, Xu L, Xu C, Ma W, Kuang H, Wang L, Kotov NA. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. J Am Chem Soc. 2012;134(36):15114–21.

Article  Google Scholar 

Xia Y, Zhou Y, Tang Z. Chiral inorganic nanoparticles: origin, optical properties and bioapplications. Nanoscale. 2011;3(4):1374–82.

Article  Google Scholar 

Ben-Moshe A, Wolf SG, Sadan MB, Houben L, Fan Z, Govorov AO, Markovich G. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat Commun. 2014;5:4302.

Article  Google Scholar 

Nakashima T, Kobayashi Y, Kawai T. Optical activity and chiral memory of thiol-capped CdTe nanocrystals. J Am Chem Soc. 2009;131(30):10342–3.

Article  Google Scholar 

Ramzan M, Naz G, Shah AA, Parveen M, Jamil M, Sidra Gill S, Sharif HMA. Synthesis of phytostabilized zinc oxide nanoparticles and their effects on physiological and anti-oxidative responses of Zea mays (L.) under chromium stress. Plant Physiol Biochem. 2023;196:130–8.

Article  Google Scholar 

Sharif HMA, Ali M, Ayyaz Mahmood A, Asif MB, Din MAU, Sillanpää M, Mahmood A, Yang B. Separation of Fe from wastewater and its use for NOx reduction; a sustainable approach for environmental remediation. Chemosphere. 2022;303: 135103.

Article  Google Scholar 

Tohgha U, Deol KK, Porter AG, Bartko SG, Choi JK, Leonard BM, Varga K, Kubelka J, Muller G, Balaz M. Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots. ACS Nano. 2013;7(12):11094–102.

Article  Google Scholar 

Baimuratov AS, Rukhlenko ID, Noskov RE, Ginzburg P, Guńko YK, Baranov AV, Fedorov AV. Giant optical activity of quantum dots, rods, and disks with screw dislocations. Sci Rep. 2015;5:14712.

Article  Google Scholar 

Zhou Y, Yang M, Sun K, Tang Z, Kotov NA. Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe Nanocrystals. J Am Chem Soc. 2010;132(17):6006–13.

Article  Google Scholar 

Suzuki N, Wang Y, Elvati P, Qu ZB, Kim K, Jiang S, Baumeister E, Lee J, Yeom B, Bahng JH, Lee J, Violi A, Kotov NA. Chiral graphene quantum dots. ACS Nano. 2016;10:1744–55.

Article  Google Scholar 

Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang JQ, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature. 2014;510(7506):522–4.

Article  Google Scholar 

Vazquez-Nakagawa M, Rodriguez-Perez L, Herranz MA, Martin N. Chirality transfer from graphene quantum dots. Chem Commun. 2016;52(4):665–8.

Article  Google Scholar 

Filippone S, Maroto EE, Martin-Domenech Á, Suarez M, Martin N. An efficient approach to chiral fullerene derivatives by catalytic enantioselective 1,3-dipolar cycloadditions. Nat Chem. 2009;1(7):578–82.

Article  Google Scholar 

Atchudan R, Kishore SC, Gangadaran P, Edison TNJI, Perumal S, Rajendran RL, Alagan M, Al-Rashed S, Ahn B, Lee YR. Tunable fluorescent carbon dots from biowaste as fluorescence ink and imaging human normal and cancer cells. Environ Res. 2022;204: 112365.

Article  Google Scholar 

Krishnaiah P, Atchudan R, Perumal S, Salama E, Lee YR, Jeon B. Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+. Chemosphere. 2022;286: 131764.

Article  Google Scholar 

Atchudan R, Edison TNJI, Perumal S, Muthuchamy N, Lee YR. Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel. 2020;275: 117821.

Article  Google Scholar 

Atchudan R, Edison TNJI, Perumal S, Vinodh R, Lee YR. Betel-derived nitrogen-doped multicolor carbon dots for environmental and biological applications. J Mol Liq. 2019;296: 111817.

Article  Google Scholar 

Atchudan R, Edison TNJI, Aseer R, Perumal S, Karthik N, Lee YR. Highly fluorescent nitrogen-doped carbon dots derived from Phyllanthus acidus utilized as a fluorescent probe for label-free selective detection of Fe3+ ions, live cell imaging and fluorescent ink. Biosens Bioelectron. 2018;99:303–11.

Article  Google Scholar 

Atchudan R, Edison TNJI, Chakradhar D, Perumal S, Shim J, Lee YR. Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sens Actuators B. 2017;246:497–509.

Article  Google Scholar 

Zhu J, Peng H, Marshall AF, Barnett DM, Nix WD, Cui Y. Formation of chiral branched nanowires by the Eshelby Twist. Nat Nano. 2008;3(8):477–81.

Article  Google Scholar 

Dong YQ, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed. 2013;52:7800–4.

Article  Google Scholar 

Chen TH, Tseng WL. Self-Assembly of monodisperse carbon dots into high-brightness nanoaggregates for cellular uptake imaging and iron(III) sensing. Anal Chem. 2017;89(21):11348–56.

Article  Google Scholar 

De B, Karak N. Recent progress in carbon dot-metal based nanohybrids for photochemical and electrochemical applications. J Mater Chem A. 2017;5(5):1826–59.

Article  Google Scholar 

Tan XW, Romainor ANB, Chin SF, Ng SM. Carbon dots production via pyrolysis of sago waste as potential probe for metal ions sensing. J Anal Appl Pyrolysis. 2014;105:157–65.

Article  Google Scholar 

Raveendran V, Suresh Babu AR, Renuka NK. Mint leaf derived carbon dots for dual analyte detection of Fe(iii) and ascorbic acid. RSC Adv. 2019;9(21):12070–7.

Article  Google Scholar 

Prasannan A, Imae T. One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res. 2013;52(44):15673–8.

Article  Google Scholar 

Vandarkuzhali SAA, Jeyalakshmi V, Sivaraman G, Singaravadivel S, Krishnamurthy KR, Viswanathan B. Highly fluorescent carbon dots from Pseudo-stem of banana plant: applications as nanosensor and bio-imaging agents. Sensors Actuators B: Chem. 2017;252:894–900.

Article  Google Scholar 

Ahmed SR, Takemeura K, Li T, Kitamoto N, Tanaka T, Suzuki T, Park EY. Size-controlled preparation of peroxidase-like graphene-gold nanoparticle hybrids for the visible detection of norovirus-like particles. Biosens Bioelectron. 2017;87:558–65.

Article  Google Scholar 

Ahmed SR, Kim J, Suzuki T, Lee J, Park EY. Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens Bioelectron. 2016;85:503–8.

Article  Google Scholar 

Ahmed SR, Kim J, Tran VT, Suzuki T, Neethirajan S, Lee J, Park EY. In situ self-assembly of gold nanoparticles on hydrophilic and hydrophobic substrates for influenza virus-sensing platform. Sci Rep. 2017;7:44495.

Article  Google Scholar 

Ahmed SR, Kim J, Suzuki T, Lee J, Park EY. Detection of influenza virus using peroxidase-mimic of gold nanoparticles. Biotechnol Bioeng. 2016;113:2298–303.

Article  Google Scholar 

Ahmed SR, Hossain MA, Park JY, Kim S, Lee D, Suzuki T, Lee J, Park EY. Metal enhanced fluorescence on nanoporous gold leaf-based assay platform for virus detection. Biosens Bioelectron. 2014;58:33–9.

Article  Google Scholar 

Lee J, Ahmed SR, Oh S, Kim J, Suzuki T, Parmar K, Park SS, Lee J, Park EY. A plasmon-assisted fluoro-immunoassay using gold nanoparticle-decorated carbon nanotubes for monitoring the influenza virus. Biosens Bioelectron. 2015;648:311–7.

Article  Google Scholar 

Lee J, Kim J, Ahmed SR, Zhou H, Kim J, Lee J. Plasmon-induced photoluminescence immunoassay for tuberculosis monitoring using gold-nanoparticle-decorated graphene. ACS Appl Mater Interfaces. 2014;6:21380–8.

Article  Google Scholar 

Ahmed SR, Cha HR, Park JY, Park EY, Lee D, Lee J. Photoluminescence enhancement of quantum dots on Ag nanoneedles. Nanoscale Res Lett. 2012;7:1–7.

Article  Google Scholar 

Zhou J, Booker C, Li R, Zhou X, Sham TK, Sun X, Ding Z. An electrochemical avenue to blue luminescent nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs). J Am Chem Soc. 2007;129(4):744–5.

Article  Google Scholar 

Guo X, Wang CF, Yu ZY, Chen L, Chen S. Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chem Commun. 2012;48(21):2692–4.

Article  Google Scholar 

Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Engl. 2010;49(38):6726–44.

Article  Google Scholar 

Kim B, Chung KW, Lee JH. Non-stop aptasensor capable of rapidly monitoring norovirus in a sample. J Pharm Biomed Anal. 2018;152:315–21.

Article  Google Scholar 

Janczuk-Richter M, Gromadzka B, Richter Ł, Panasiuk M, Zimmer K, Mikulic P, Bock WJ, Ma’ckowski S, Smietana M, Jonsson JN. Immunosensor based on long-period fiber gratings for detection of viruses causing gastroenteritis. Sensors. 2020;20:813.

Article 

留言 (0)

沒有登入
gif