Emerging role of bacterial outer membrane vesicle in gastrointestinal tract

Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol life Sci CMLS. 2019;76:473–93. https://doi.org/10.1007/s00018-018-2943-4.

Article  CAS  PubMed  Google Scholar 

Gilbert JA, et al. Current understanding of the human microbiome. Nat Med. 2018;24:392–400. https://doi.org/10.1038/nm.4517.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shetty SA, Hugenholtz F, Lahti L, Smidt H, de Vos WM. Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiol Rev. 2017;41:182–99. https://doi.org/10.1093/femsre/fuw045.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nogacka AM, et al. Xenobiotics formed during food processing: their relation with the intestinal microbiota and colorectal cancer. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20082051.

Article  PubMed  PubMed Central  Google Scholar 

Jahromi LP, Fuhrmann G. Bacterial extracellular vesicles: understanding biology promotes applications as nanopharmaceuticals. Adv Drug Deliv Rev. 2021;173:125–40. https://doi.org/10.1016/j.addr.2021.03.012.

Article  CAS  PubMed  Google Scholar 

Unal CM, Schaar V, Riesbeck K. Bacterial outer membrane vesicles in disease and preventive medicine. Semin Immunopathol. 2011;33:395–408. https://doi.org/10.1007/s00281-010-0231-y.

Article  CAS  PubMed  Google Scholar 

Sartorio MG, Pardue EJ, Feldman MF, Haurat MF. Bacterial outer membrane vesicles: from discovery to applications. Annu Rev Microbiol. 2021;75:609–30. https://doi.org/10.1146/annurev-micro-052821-031444.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pérez-Cruz C, Delgado L, López-Iglesias C, Mercade E. Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria. PLoS ONE. 2015;10:e0116896. https://doi.org/10.1371/journal.pone.0116896.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uddin MJ, et al. The role of bacterial membrane vesicles in the dissemination of antibiotic resistance and as promising carriers for therapeutic agent delivery. Microorganisms. 2020. https://doi.org/10.3390/microorganisms8050670.

Article  PubMed  PubMed Central  Google Scholar 

Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol. 2015;13:605–19. https://doi.org/10.1038/nrmicro3525.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li DF, et al. Extracellular vesicles: the next generation theranostic nanomedicine for inflammatory bowel disease. Int J Nanomedicine. 2022;17:3893–911. https://doi.org/10.2147/ijn.S370784.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Díaz-Garrido N, Badia J, Baldomà L. Microbiota-derived extracellular vesicles in interkingdom communication in the gut. J Extracell Vesicles. 2021;10:e12161. https://doi.org/10.1002/jev2.12161.

Article  PubMed  PubMed Central  Google Scholar 

Bose S, Aggarwal S, Singh DV, Acharya N. Extracellular vesicles: an emerging platform in gram-positive bacteria. Microbial Cell. 2020;7:312–22. https://doi.org/10.15698/mic2020.12.737.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292:1115–8. https://doi.org/10.1126/science.1058709.

Article  CAS  PubMed  Google Scholar 

Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14. https://doi.org/10.1038/nature11234.

Article  CAS  Google Scholar 

Yatsunenko T, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7. https://doi.org/10.1038/nature11053.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rowland I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57:1–24. https://doi.org/10.1007/s00394-017-1445-8.

Article  CAS  PubMed  Google Scholar 

Wan MLY, Ling KH, El-Nezami H, Wang MF. Influence of functional food components on gut health. Crit Rev Food Sci Nutr. 2019;59:1927–36. https://doi.org/10.1080/10408398.2018.1433629.

Article  CAS  PubMed  Google Scholar 

Verbeke KA, et al. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev. 2015;28:42–66. https://doi.org/10.1017/s0954422415000037.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hills RD Jr, et al. Gut microbiome: profound implications for diet and disease. Nutrients. 2019. https://doi.org/10.3390/nu11071613.

Article  PubMed  PubMed Central  Google Scholar 

Del Chierico F, et al. Phylogenetic and metabolic tracking of gut microbiota during perinatal development. PLoS ONE. 2015;10:e0137347. https://doi.org/10.1371/journal.pone.0137347.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schanche M, et al. High-resolution analyses of overlap in the microbiota between mothers and their children. Curr Microbiol. 2015;71:283–90. https://doi.org/10.1007/s00284-015-0843-5.

Article  CAS  PubMed  Google Scholar 

Filyk HA, Osborne LC. The multibiome: the intestinal ecosystem’s influence on immune homeostasis, health, and disease. EBioMedicine. 2016;13:46–54. https://doi.org/10.1016/j.ebiom.2016.10.007.

Article  PubMed  PubMed Central  Google Scholar 

DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22:1137–50. https://doi.org/10.1097/mib.0000000000000750.

Article  PubMed  Google Scholar 

Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep. 2015;16:24–43. https://doi.org/10.15252/embr.201439363.

Article  CAS  PubMed  Google Scholar 

Mashburn-Warren LM, Whiteley M. Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol. 2006;61:839–46. https://doi.org/10.1111/j.1365-2958.2006.05272.x.

Article  CAS  PubMed  Google Scholar 

Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019;17:13–24. https://doi.org/10.1038/s41579-018-0112-2.

Article  CAS  PubMed  Google Scholar 

Roier S, Zingl FG, Cakar F, Schild S. Bacterial outer membrane vesicle biogenesis: a new mechanism and its implications. Microbial Cell. 2016;3:257–9. https://doi.org/10.15698/mic2016.06.508.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang M, Nie Y, Wu XL. Extracellular heme recycling and sharing across species by novel mycomembrane vesicles of a gram-positive bacterium. ISME J. 2021;15:605–17. https://doi.org/10.1038/s41396-020-00800-1.

Article  CAS  PubMed  Google Scholar 

Obana N, et al. Immunoactive clostridial membrane vesicle production is regulated by a sporulation factor. Infect Immun. 2017. https://doi.org/10.1128/iai.00096-17.

Article  PubMed  PubMed Central  Google Scholar 

Guerrero-Mandujano A, Hernández-Cortez C, Ibarra JA, Castro-Escarpulli G. The outer membrane vesicles: secretion system type zero. Traffic. 2017;18:425–32. https://doi.org/10.1111/tra.12488.

Article  CAS  PubMed  Google Scholar 

Meldolesi J. Extracellular vesicles, news about their role in immune cells: physiology, pathology and diseases. Clin Exp Immunol. 2019;196:318–27. https://doi.org/10.1111/cei.13274.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furuyama N, Sircili MP. Outer membrane vesicles (OMVs) produced by gram-negative bacteria: structure, functions, biogenesis, and vaccine application. Biomed Res Int. 2021;2021:1490732. https://doi.org/10.1155/2021/1490732.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol. 2010;64:163–84. https://doi.org/10.1146/annurev.micro.091208.073413.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuehn MJ, Kesty NC. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 2005;19:2645–55. https://doi.org/10.1101/gad.1299905.

Article  CAS 

留言 (0)

沒有登入
gif