Evaluation of Cellular Immune Response to Adeno-Associated Virus-Based Gene Therapy

FDA: Human Gene Therapy for Neurodegenerative Diseases. Draft Guidance for Industry. https://www.fda.gov/media/144886/download (2021). Accessed 2022.

FDA: Human Gene Therapy for Hemophilia Guidance for Industry. https://www.fda.gov/media/113799/download (2020). Accessed.

FDA: Human Gene Therapy for Rare Diseases Guidance for Industry. https://www.fda.gov/media/113807/downlod (2020). Accessed.

FDA: Human Gene Therapy for Retinal Disorders Guidance for Industry. https://www.fda.gov/media/124641/download (2020). Accessed.

Takeuchi A, Saito T. CD4 CTL, a cytotoxic subset of CD4(+) T cells, their differentiation and function. Front Immunol. 2017;8:194. https://doi.org/10.3389/fimmu.2017.00194.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aslan N, Yurdaydin C, Wiegand J, Greten T, Ciner A, Meyer MF, et al. Cytotoxic CD4 T cells in viral hepatitis. J Viral Hepat. 2006;13(8):505–14. https://doi.org/10.1111/j.1365-2893.2006.00723.x.

Article  CAS  PubMed  Google Scholar 

Arjomandnejad M, Sylvia K, Blackwood M, Nixon T, Tang Q, Muhuri M, et al. Modulating immune responses to AAV by expanded polyclonal T-regs and capsid specific chimeric antigen receptor T-regulatory cells. Mol Ther Methods Clin Dev. 2021;23:490–506. https://doi.org/10.1016/j.omtm.2021.10.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mueller C, Chulay JD, Trapnell BC, Humphries M, Carey B, Sandhaus RA, et al. Human Treg responses allow sustained recombinant adeno-associated virus-mediated transgene expression. J Clin Invest. 2013;123(12):5310–8. https://doi.org/10.1172/jci70314.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JE, et al. CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med. 2007;13(4):419–22. https://doi.org/10.1038/nm1549.

Article  CAS  PubMed  Google Scholar 

Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med. 2006;12(3):342–7. https://doi.org/10.1038/nm1358.

Article  CAS  PubMed  Google Scholar 

Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med. 2011;365(25):2357–65. https://doi.org/10.1056/NEJMoa1108046.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palaschak B, Marsic D, Herzog RW, Zolotukhin S, Markusic DM. An Immune-competent murine model to study elimination of AAV-transduced hepatocytes by capsid-specific CD8(+) T cells. Mol Ther Methods Clin Dev. 2017;5:142–52. https://doi.org/10.1016/j.omtm.2017.04.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martino AT, Markusic DM. Immune response mechanisms against AAV vectors in animal models. Mol Ther Methods Clin Dev. 2020;17:198–208. https://doi.org/10.1016/j.omtm.2019.12.008.

Article  CAS  PubMed  Google Scholar 

Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, McIntosh J, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014;371(21):1994–2004. https://doi.org/10.1056/NEJMoa1407309.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ertl HCJ, High KA. Impact of AAV capsid-specific T-cell responses on design and outcome of clinical gene transfer trials with recombinant adeno-associated viral vectors: an evolving controversy. Hum Gene Ther. 2017;28(4):328–37. https://doi.org/10.1089/hum.2016.172.

Article  CAS  PubMed  Google Scholar 

Jiang H, Couto LB, Patarroyo-White S, Liu T, Nagy D, Vargas JA, et al. Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood. 2006;108(10):3321–8. https://doi.org/10.1182/blood-2006-04-017913.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li C, Hirsch M, Asokan A, Zeithaml B, Ma H, Kafri T, et al. Adeno-associated virus type 2 (AAV2) capsid-specific cytotoxic T lymphocytes eliminate only vector-transduced cells coexpressing the AAV2 capsid in vivo. J Virol. 2007;81(14):7540–7. https://doi.org/10.1128/jvi.00529-07.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Figueredo J, Calcedo R, Lin J, Wilson JM. Cross-presentation of adeno-associated virus serotype 2 capsids activates cytotoxic T cells but does not render hepatocytes effective cytolytic targets. Hum Gene Ther. 2007;18(3):185–94. https://doi.org/10.1089/hum.2007.001.

Article  CAS  PubMed  Google Scholar 

Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol. 2010;17(7):1055–65. https://doi.org/10.1128/cvi.00131-10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Plotkin SA, Plotkin SA. Correlates of vaccine-induced immunity. Clin Infect Dis. 2008;47(3):401–9. https://doi.org/10.1086/589862.

Article  PubMed  Google Scholar 

Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol. 2002;2(4):251–62. https://doi.org/10.1038/nri778.

Article  CAS  PubMed  Google Scholar 

Calarota SA, Baldanti F. Enumeration and characterization of human memory T cells by enzyme-linked immunospot assays. Clin Dev Immunol. 2013;2013:637649. https://doi.org/10.1155/2013/637649.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowles DE, McPhee SW, Li C, Gray SJ, Samulski JJ, Camp AS, et al. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther. 2012;20(2):443–55. https://doi.org/10.1038/mt.2011.237.

Article  CAS  PubMed  Google Scholar 

Ferreira V, Petry H, Salmon F. Immune responses to AAV-vectors, the Glybera example from bench to bedside. Front Immunol. 2014;5:82. https://doi.org/10.3389/fimmu.2014.00082.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira V, Twisk J, Kwikkers K, Aronica E, Brisson D, Methot J, et al. Immune responses to intramuscular administration of alipogene tiparvovec (AAV1-LPL(S447X)) in a phase II clinical trial of lipoprotein lipase deficiency gene therapy. Hum Gene Ther. 2014;25(3):180–8. https://doi.org/10.1089/hum.2013.169.

Article  CAS  PubMed  Google Scholar 

Mingozzi F, Meulenberg JJ, Hui DJ, Basner-Tschakarjan E, Hasbrouck NC, Edmonson SA, et al. AAV-1-mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells. Blood. 2009;114(10):2077–86. https://doi.org/10.1182/blood-2008-07-167510.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long BR, Veron P, Kuranda K, Hardet R, Mitchell N, Hayes GM, et al. Early phase clinical immunogenicity of valoctocogene roxaparvovec, an AAV5-mediated gene therapy for hemophilia A. Mol Ther. 2021;29(2):597–610. https://doi.org/10.1016/j.ymthe.2020.12.008.

Article  CAS  PubMed  Google Scholar 

Au HKE, Isalan M, Mielcarek M. Gene therapy advances: a meta-analysis of AAV usage in clinical settings. Front Med (Lausanne). 2021;8:809118. https://doi.org/10.3389/fmed.2021.809118.

Article  PubMed  Google Scholar 

Nathwani AC, Rosales C, McIntosh J, Rastegarlari G, Nathwani D, Raj D, et al. Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins. Mol Ther. 2011;19(5):876–85. https://doi.org/10.1038/mt.2010.274.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mingozzi F, High KA. Overcoming the host immune response to adeno-associated virus gene delivery vectors: the race between clearance, tolerance, neutralization, and escape. Ann Rev Virol. 2017;4(1):511–34. https://doi.org/10.1146/annurev-virology-101416-041936.

Article  CAS  Google Scholar 

Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev. 2018;8:87–104. https://doi.org/10.1016/j.omtm.2017.11.007.

Article  CAS  PubMed  Google Scholar 

Johnson JS, Samulski RJ. Enhancement of adeno-associated virus infection by mobilizing capsids into and out of the nucleolus. J Virol. 2009;83(6):2632–44. https://doi.org/10.1128/jvi.02309-08.

Article  CAS  PubMed  Google Scholar 

Brantly ML, Chulay JD, Wang L, Mueller C, Humphries M, Spencer LT, et al. Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. Proc Natl Acad Sci U S A. 2009;106(38):16363–8. https://doi.org/10.1073/pnas.0904514106.

Article  PubMed  PubMed Central  Google Scholar 

Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2231–9. https://doi.org/10.1056/NEJMoa0802268.

Article  CAS  PubMed  Google Scholar 

Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, et al. Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther. 2008;19(10):979–90. https://doi.org/10.1089/hum.2008.107.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patton KS, Harrison MT, Long BR, Lau K, Holcomb J, Owen R, et al. Monitoring cell-mediated immune responses in AAV gene therapy clinical trials using a validated IFN-γ ELISpot method. Mol Ther Methods Clin Dev. 2021;22:183–95. https://doi.org/10.1016/j.omtm.2021.05.012.

Article  CAS 

留言 (0)

沒有登入
gif