Molecular mimicry and cancer vaccine development

Schumacher TN, Scheper W, Kvistborg P. Cancer Neoantigens. Annu Rev Immunol. 2019;37:173–200.

Article  CAS  PubMed  Google Scholar 

Stronen E, Toebes M, Kelderman S, van Buuren MM, Yang W, van Rooij N, Donia M, Boschen ML, Lund-Johansen F, Olweus J, et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science. 2016;352(6291):1337–41.

Article  CAS  PubMed  Google Scholar 

Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, Bukur V, Tadmor AD, Luxemburger U, Schrors B, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222–6.

Article  CAS  PubMed  Google Scholar 

Buonaguro L, Tagliamonte M. Selecting Target Antigens for Cancer Vaccine Development. Vaccines (Basel). 2020;8(4):615.

Article  CAS  PubMed  Google Scholar 

Theobald M, Biggs J, Hernandez J, Lustgarten J, Labadie C, Sherman LA. Tolerance to p53 by A2.1-restricted cytotoxic T lymphocytes. J Exp Med. 1997;185(5):833–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buonaguro L, Petrizzo A, Tornesello ML, Buonaguro FM. Translating tumor antigens into cancer vaccines. Clin Vaccine Immunol. 2011;18(1):23–34.

Article  CAS  PubMed  Google Scholar 

Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298(5594):850–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parmiani G, Castelli C, Dalerba P, Mortarini R, Rivoltini L, Marincola FM, Anichini A. Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst. 2002;94(11):805–18.

Article  CAS  PubMed  Google Scholar 

Fikes JD, Sette A. Design of multi-epitope, analogue-based cancer vaccines. Expert Opin Biol Ther. 2003;3(6):985–93.

Article  CAS  PubMed  Google Scholar 

Cavalluzzo B, Ragone C, Mauriello A, Petrizzo A, Manolio C, Caporale A, Vitagliano L, Ruvo M, Buonaguro L, Tagliamonte M. Identification and characterization of heteroclitic peptides in TCR-binding positions with improved HLA-binding efficacy. J Translational Med. 2021;19(1):89.

Article  CAS  Google Scholar 

Mauriello A, Cavalluzzo B, Manolio C, Ragone C, Luciano A, Barbieri A, Tornesello ML, Buonaguro FM, Tagliamonte M, Buonaguro L. Long-term memory T cells as preventive anticancer immunity elicited by TuA-derived heteroclitic peptides. J Translational Med. 2021;19:526.

Article  CAS  Google Scholar 

Tagliamonte M, Mauriello A, Cavalluzzo B, Ragone C, Manolio C, Luciano A, Barbieri A, Palma G, Scognamiglio G, Di Mauro A, et al. MHC-Optimized peptide Scaffold for Improved Antigen Presentation and Anti-Tumor Response. Front Immunol. 2021;12:769799.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Damian RT. Molecular mimicry: antigen sharing by parasite and host and its consequences. Am Nat. 1964;98:129–49.

Article  Google Scholar 

Kaplan MH, Meyeserian M. An immunological cross-reaction between group-A streptococcal cells and human heart tissue. Lancet. 1962;1(7232):706–10.

Article  CAS  PubMed  Google Scholar 

von Herrath MG, Oldstone MB. Virus-induced autoimmune disease. Curr Opin Immunol. 1996;8(6):878–85.

Article  PubMed Central  Google Scholar 

Johnson D, Jiang W. Infectious diseases, autoantibodies, and autoimmunity. J Autoimmun 2022:102962.

Rojas M, Restrepo-Jimenez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramirez-Santana C, Leung PSC, Ansari AA, Gershwin ME, Anaya JM. Molecular mimicry and autoimmunity. J Autoimmun. 2018;95:100–23.

Article  CAS  PubMed  Google Scholar 

Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michel H, Sevilir N, Cox AL, Appella E, Engelhard VH. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science. 1992;255(5049):1261–3.

Article  CAS  PubMed  Google Scholar 

Parker KC, Bednarek MA, Hull LK, Utz U, Cunningham B, Zweerink HJ, Biddison WE, Coligan JE. Sequence motifs important for peptide binding to the human MHC class I molecule, HLA-A2. J Immunol. 1992;149(11):3580–7.

Article  CAS  PubMed  Google Scholar 

Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999;50(3–4):213–9.

Article  CAS  PubMed  Google Scholar 

Rammensee HG, Friede T, Stevanoviic S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995;41(4):178–228.

Article  CAS  PubMed  Google Scholar 

Cunningham MW. Molecular mimicry. Encyclopedia of Life Science. edn. Chichester, UK:John Wiley & Sons Ltd; 2009.

Jerne NK. The somatic generation of immune recognition. Eur J Immunol. 1971;1(1):1–9.

Article  CAS  PubMed  Google Scholar 

Jerne NK. The natural-selection therory of antibody formation. Proc Natl Acad Sci U S A. 1955;41(11):849–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. A direct estimate of the human alphabeta T cell receptor diversity. Science. 1999;286(5441):958–61.

Article  CAS  PubMed  Google Scholar 

Mason D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today. 1998;19(9):395–404.

Article  CAS  PubMed  Google Scholar 

Wilson DB, Wilson DH, Schroder K, Pinilla C, Blondelle S, Houghten RA, Garcia KC. Specificity and degeneracy of T cells. Mol Immunol. 2004;40(14–15):1047–55.

Article  CAS  PubMed  Google Scholar 

Wucherpfennig KW, Allen PM, Celada F, Cohen IR, De Boer R, Garcia KC, Goldstein B, Greenspan R, Hafler D, Hodgkin P, et al. Polyspecificity of T cell and B cell receptor recognition. Semin Immunol. 2007;19(4):216–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kersh GJ, Allen PM. Structural basis for T cell recognition of altered peptide ligands: a single T cell receptor can productively recognize a large continuum of related ligands. J Exp Med. 1996;184(4):1259–68.

Article  CAS  PubMed  Google Scholar 

Garcia KC, Adams JJ, Feng D, Ely LK. The molecular basis of TCR germline bias for MHC is surprisingly simple. Nat Immunol. 2009;10(2):143–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zerrahn J, Held W, Raulet DH. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell. 1997;88(5):627–36.

Article  CAS  PubMed  Google Scholar 

Sim BC, Zerva L, Greene MI, Gascoigne NR. Control of MHC restriction by TCR valpha CDR1 and CDR2. Science. 1996;273(5277):963–6.

Article  CAS  PubMed  Google Scholar 

Tynan FE, Burrows SR, Buckle AM, Clements CS, Borg NA, Miles JJ, Beddoe T, Whisstock JC, Wilce MC, Silins SL, et al. T cell receptor recognition of a ‘super-bulged’ major histocompatibility complex class I-bound peptide. Nat Immunol. 2005;6(11):1114–22.

Article  CAS  PubMed  Google Scholar 

Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 2006;24:419–66.

Article  CAS  PubMed  Google Scholar 

Burrows SR, Chen Z, Archbold JK, Tynan FE, Beddoe T, Kjer-Nielsen L, Miles JJ, Khanna R, Moss DJ, Liu YC, et al. Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability. Proc Natl Acad Sci U S A. 2010;107(23):10608–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ignatowicz L, Kappler J, Marrack P. The repertoire of T cells shaped by a single MHC/peptide ligand. Cell. 1996;84(4):521–9.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif