A systematic review and meta-analysis of artificial intelligence diagnostic accuracy in prostate cancer histology identification and grading

Stamatiou K, Alevizos A, Agapitos E, Sofras F. Incidence of impalpable carcinoma of the prostate and of non-malignant and precarcinomatous lesions in Greek male population: An autopsy study. Prostate [Internet]. 2006;66:1319–28. https://onlinelibrary.wiley.com/doi/10.1002/pros.20339

Article  PubMed  Google Scholar 

Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol [Internet]. 2020;77:38–52. https://linkinghub.elsevier.com/retrieve/pii/S0302283819306190

Article  PubMed  Google Scholar 

Sun Y, Reynolds HM, Parameswaran B, Wraith D, Finnegan ME, Williams S, et al. Multiparametric MRI and radiomics in prostate cancer: A review. Australas Phys Eng Sci Med [Internet]. 2019;42:3–25. http://link.springer.com/10.1007/s13246-019-00730-z

Article  PubMed  Google Scholar 

Szentirmai E, Giannico GA. Intraductal carcinoma of the prostate. Pathologica 2020;112:17–24.

Article  PubMed  PubMed Central  Google Scholar 

Truong M, Frye T, Messing E, Miyamoto H. Historical and contemporary perspectives on cribriform morphology in prostate cancer. Nat Rev Urol [Internet]. 2018;15:475–82. http://www.nature.com/articles/s41585-018-0013-1

Article  PubMed  Google Scholar 

Hamet P, Tremblay J. Artificial intelligence in medicine. Metab [Internet]. 2017;69:S36–40. https://linkinghub.elsevier.com/retrieve/pii/S002604951730015X

Article  CAS  Google Scholar 

Ramesh A, Kambhampati C, Monson J, Drew P. Artificial intelligence in medicine. Ann R Coll Surg Engl [Internet]. 2004;86:334–8. http://www.ingentaselect.com/rpsv/cgi-bin/cgi?ini=xref&body=linker&reqdoi=10.1308/147870804290

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akkus Z, Cai J, Boonrod A, Zeinoddini A, Weston AD, Philbrick KA, et al. A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence–Powered Ultrasound for Improving Clinical Workflow. J Am Coll Radio [Internet]. 2019;16:1318–28. https://linkinghub.elsevier.com/retrieve/pii/S1546144019307112

Article  Google Scholar 

Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol [Internet]. 2019;28:73–81. https://www.tandfonline.com/doi/full/10.1080/13645706.2019.1575882

Article  PubMed  Google Scholar 

Niel O, Bastard P. Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives. Am J Kidney Dis [Internet]. 2019;74:803–10. https://linkinghub.elsevier.com/retrieve/pii/S027263861930842X

Article  PubMed  Google Scholar 

Jiang Y, Yang M, Wang S, Li X, Sun Y. Emerging role of deep learning‐based artificial intelligence in tumor pathology. Cancer Commun [Internet]. 2020;40:154–66. https://onlinelibrary.wiley.com/doi/10.1002/cac2.12012

Article  Google Scholar 

Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence. Lancet Oncol [Internet]. 2019;20:e253–61. https://linkinghub.elsevier.com/retrieve/pii/S1470204519301548

Article  PubMed  Google Scholar 

Acs B, Rantalainen M, Hartman J. Artificial intelligence as the next step towards precision pathology. J Intern Med [Internet]. 2020;288:62–81. https://onlinelibrary.wiley.com/doi/10.1111/joim.13030

Article  CAS  PubMed  Google Scholar 

Phillips B, Ball C, Sackett D, Badenoch D, Straus S, Haynes B, et al. Levels of Evidence [Internet]. Oxford Centre for Evidence-based Medicine. [cited 2020 Aug 20]. Available from: https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/

Wittke C, Mayer J, Schweiggert F. On the classification of prostate carcinoma with methods from spatial statistics. IEEE Trans Inf Technol Biomed [Internet]. 2007;11:406–14. http://ieeexplore.ieee.org/document/4267694/

Article  PubMed  Google Scholar 

Gorelick L, Veksler O, Gaed M, Gomez JA, Moussa M, Bauman G, et al. Prostate Histopathology: Learning Tissue Component Histograms for Cancer Detection and Classification. IEEE Trans Med Imaging [Internet]. 2013;32:1804–18. http://ieeexplore.ieee.org/document/6522505/

Article  PubMed  Google Scholar 

Chen C, Huang Y, Fang P, Liang C, Chang R. A computer‐aided diagnosis system for differentiation and delineation of malignant regions on whole‐slide prostate histopathology image using spatial statistics and multidimensional DenseNet. Med Phys [Internet]. 2020;47:1021–33. https://onlinelibrary.wiley.com/doi/10.1002/mp.13964

Article  PubMed  Google Scholar 

Lucas M, Jansen I, Savci-Heijink CD, Meijer SL, de Boer OJ, van Leeuwen TG, et al. Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies. Virchows Arch [Internet]. 2019;475:77–83. http://link.springer.com/10.1007/s00428-019-02577-x

Article  PubMed  Google Scholar 

Nir G, Karimi D, Goldenberg SL, Fazli L, Skinnider BF, Tavassoli P, et al. Comparison of Artificial Intelligence Techniques to Evaluate Performance of a Classifier for Automatic Grading of Prostate Cancer From Digitized Histopathologic Images. JAMA Netw Open [Internet]. 2019;2:e190442 http://jamanetworkopen.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2019.0442

Article  PubMed  Google Scholar 

Arvaniti E, Fricker KS, Moret M, Rupp N, Hermanns T, Fankhauser C, et al. Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Sci Rep. [Internet]. 2018;8:12054 http://www.nature.com/articles/s41598-018-30535-1

Article  PubMed  Google Scholar 

Bulten W, Bándi P, Hoven J, Loo R, van de, Lotz J, Weiss N, et al. Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard. Sci Rep. [Internet]. 2019;9:864 http://www.nature.com/articles/s41598-018-37257-4

Article  PubMed  Google Scholar 

Ambrosini P, Hollemans E, Kweldam CF, van Leenders GJLH, Stallinga S, Vos F. Automated detection of cribriform growth patterns in prostate histology images. Sci Rep. [Internet]. 2020;10:1–13. https://doi.org/10.1038/s41598-020-71942-7

Article  CAS  Google Scholar 

Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, van Ginneken B, et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol [Internet]. 2020;21:233–41. https://doi.org/10.1016/S1470-2045(19)30739-9

Article  PubMed  Google Scholar 

Egevad L, Swanberg D, Delahunt B, Ström P, Kartasalo K, Olsson H, et al. Identification of areas of grading difficulties in prostate cancer and comparison with artificial intelligence assisted grading. Virchows Arch [Internet]. 2020;477:777–86. https://link.springer.com/10.1007/s00428-020-02858-w

Article  CAS  PubMed  Google Scholar 

Lokhande A, Bonthu S, Singhal N Carcino-Net: A Deep Learning Framework for Automated Gleason Grading of Prostate Biopsies. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) [Internet]. IEEE; 2020. p. 1380–3. Available from: https://ieeexplore.ieee.org/document/9176235/

Marginean F, Arvidsson I, Simoulis A, Christian Overgaard N, Åström K, Heyden A, et al. An Artificial Intelligence–based Support Tool for Automation and Standardisation of Gleason Grading in Prostate Biopsies. Eur Urol. Focus [Internet]. 2020;46:5–11. https://linkinghub.elsevier.com/retrieve/pii/S2405456920302960

Google Scholar 

Nagpal K, Foote D, Tan F, Liu Y, Chen P-HC, Steiner DF, et al. Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer From Biopsy Specimens. JAMA Oncol [Internet]. 2020;6:1372 https://jamanetwork.com/journals/jamaoncology/fullarticle/2768225

Article  PubMed  Google Scholar 

Pantanowitz L, Quiroga-Garza GM, Bien L, Heled R, Laifenfeld D, Linhart C, et al. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study. Lancet Digit Heal [Internet] 2020;2:e407–16. https://doi.org/10.1016/S2589-7500(20)30159-X

Article  Google Scholar 

Raciti P, Sue J, Ceballos R, Godrich R, Kunz JD, Kapur S, et al. Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies. Mod Pathol [Internet]. 2020;33:2058–66. https://doi.org/10.1038/s41379-020-0551-y

Article  PubMed  Google Scholar 

Silva-Rodríguez J, Colomer A, Sales MA, Molina R, Naranjo V. Going deeper through the Gleason scoring scale: An automatic end-to-end system for histology prostate grading and cribriform pattern detection. Comput Methods Prog Biomed [Internet]. 2020;195:105637. https://linkinghub.elsevier.com/retrieve/pii/S016926072031470X

Article  Google Scholar 

Steiner DF, Nagpal K, Sayres R, Foote DJ, Wedin BD, Pearce A, et al. Evaluation of the Use of Combined Artificial Intelligence and Pathologist Assessment to Review and Grade Prostate Biopsies. JAMA Netw Open [Internet]. 2020;3:e2023267. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2772831

Article  PubMed  Google Scholar 

Ström P, Kartasalo K, Olsson H, Solorzano L, Delahunt B, Berney DM, et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol [Internet]. 2020;21:222–32. https://linkinghub.elsevier.com/retrieve/pii/S1470204519307387

Article  PubMed  Google Scholar 

Yang Q, Xu Z, Liao C, Cai J, Huang Y, Chen H, et al. Epithelium segmentation and automated Gleason grading of prostate cancer via deep learning in label‐free multiphoton microscopic images. J Biophotonics [Internet]. 2020;13:1–11. https://onlinelibrary.wiley.com/doi/10.1002/jbio.201900203

CAS  Google Scholar 

Bulten W, Balkenhol M, Belinga J-JA, Brilhante A, Çakır A, Egevad L, et al. Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists. Mod Pathol [Internet]. 2021;34:660–71. https://www.nature.com/articles/s41379-020-0640-y

Article  CAS  PubMed  Google Scholar 

Kudo MS, de Souza VMG, de Souza Amaral G, de Souza Melo PA, Estivallet CLN, Santos ER, et al. The potential of convolutional neural network diagnosing prostate cancer. Res Biomed Eng [Internet]. 2021;37:25–31. http://link.springer.com/10.1007/s42600-020-00095-3

Article  Google Scholar 

Mun Y, Paik I, Shin S-J, Kwak T-Y, Chang H. Yet Another Automated Gleason Grading System (YAAGGS) by weakly supervised deep learning. npj Digit Med [Internet] 2021;4:99. https://doi.org/10.1038/s41746-021-00469-6

Article  PubMed  Google Scholar 

Perincheri S, Levi AW, Celli R, Gershkovich P, Rimm D, Morrow JS, et al. An independent assessment of an artificial intelligence system for prostate cancer detection shows strong diagnostic accuracy. Mod Pathol [Internet]. 2021;34:1588–95. https://doi.org/10.1038/s41379-021-00794-x

Article  PubMed  Google Scholar 

Silva LM, Pereira EM, Salles PG, Godrich R, Ceballos R, Kunz JD, et al. Independent real‐world application of a clinical‐grade automated prostate cancer detection system. J Pathol [Internet]. 2021;254:147–58. https://onlinelibrary.wiley.com/doi/10.1002/path.5662

Article  PubMed  Google Scholar 

Rigby AS. Statistical methods in epidemiology. v. Towards an understanding of the kappa coefficient. Disabil Rehabil [Internet]. 2000;22:339–44. http://www.tandfonline.com/doi/full/10.1080/096382800296575

Article  CAS  PubMed 

留言 (0)

沒有登入
gif