Overview of the cardio-metabolic impact of the COVID-19 pandemic

J.T. Wu, K. Leung, M. Bushman, N. Kishore, R. Niehus, P.M. de Salazar, B.J. Cowling, M. Lipsitch, G.M. Leung, Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 26, 506–510 (2020). https://doi.org/10.1038/s41591-020-0822-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

W.H. Organization, Cardiovascular diseases (cvds) (2009). http://www.whoint/mediacentre/factsheets/fs317/en/index html

G.H. Rao, The tsunami of cardiometabolic diseases: an overview. J Diabetes Obes Metab Syndr 1, 01–09 (2019)

Google Scholar 

World Health Organization, WHO coronavirus dashboard (2022) https://covid19.who.int

World Health Organization, United States of America corona virus situation (2021) https://covid19.who.int/region/amro/country/us.

H. Shah, M.S.H. Khan, N.V. Dhurandhar, V. Hegde, The triumvirate: why hypertension, obesity, and diabetes are risk factors for adverse effects in patients with COVID-19. Acta Diabetol 58, 831–843 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Abu-Farha, F. Al-Mulla, T.A. Thanaraj, S. Kavalakatt, H. Ali, M. Abdul Ghani, J. Abubaker, Impact of diabetes in patients diagnosed With COVID-19. Front Immunol 11, 576818 (2020). https://doi.org/10.3389/fimmu.2020.576818

Article  CAS  PubMed  PubMed Central  Google Scholar 

L. Kompaniyets, A.F. Pennington, A.B. Goodman, H.G. Rosenblum, B. Belay, J.Y. Ko, J.R. Chevinsky, L.Z. Schieber, A.D. Summers, A.M. Lavery, Peer reviewed: underlying medical conditions and severe illness among 540,667 adults hospitalized with COVID-19, March 2020–March 2021. Preventing chronic disease 18, E66 (2021). https://doi.org/10.5888/pcd18.210123

Article  PubMed  PubMed Central  Google Scholar 

H. Yanai, Metabolic Syndrome and COVID-19. Cardiol. Res. 11, 360–365 (2020). https://doi.org/10.14740/cr1181

Article  PubMed  PubMed Central  Google Scholar 

Y. Li, T. Ashcroft, A. Chung, I. Dighero, M. Dozier, M. Horne, E. McSwiggan, A. Shamsuddin, H. Nair, Risk factors for poor outcomes in hospitalised COVID-19 patients: a systematic review and meta-analysis. J. Global Health 11, 10001 (2021). https://doi.org/10.7189/jogh.11.10001

Article  Google Scholar 

S.M. Ng, J. Pan, K. Mouyis, S.R. Kondapally Seshasai, V. Kapil, K.M. Rice, A.K. Gupta, Quantifying the excess risk of adverse COVID-19 outcomes in unvaccinated individuals with diabetes mellitus, hypertension, ischaemic heart disease or myocardial injury: a meta-analysis. Front. Cardiovasc Med. 26(9), 871151 (2022). https://doi.org/10.3389/fcvm.2022.871151

Article  CAS  Google Scholar 

H. Yang, Z. Rao, Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat. Rev. Microbiol. 19, 685–700 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

C.B. Jackson, M. Farzan, B. Chen, H. Choe, Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23, 3–20 (2022)

Article  CAS  PubMed  Google Scholar 

M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T.S. Schiergens, G. Herrler, N.-H. Wu, A. Nitsche, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

S.G. Ramos, B. Amanda da Cruz Rattis, G. Ottaviani, M.R. Nunes Celes, E.P. Dias, ACE2 down-regulation may act as a transient molecular disease causing RAAS dysregulation and tissue damage in the microcirculatory environment among COVID-19 patients. Am. J. Pathol. (2021). https://doi.org/10.1016/j.ajpath.2021.04.010

F. Rubino, S.A. Amiel, P. Zimmet, G. Alberti, S. Bornstein, R.H. Eckel, G. Mingrone, B. Boehm, M.E. Cooper, Z. Chai, S. Del Prato, L. Ji, D. Hopkins, W.H. Herman, K. Khunti, J.C. Mbanya, E. Renard, New-onset diabetes in covid-19. N. Engl. J. Med. 383, 789–790 (2020). https://doi.org/10.1056/NEJMc2018688

Article  PubMed  Google Scholar 

A. Srivastava, C. Rockman-Greenberg, N. Sareen, V. Lionetti, S. Dhingra, An insight into the mechanisms of COVID-19, SARS-CoV2 infection severity concerning β-cell survival and cardiovascular conditions in diabetic patients. Mol. Cell. Biochem. 477, 1–15 (2022)

Article  Google Scholar 

S.M. Bindom, E. Lazartigues, The sweeter side of ACE2: physiological evidence for a role in diabetes. Mol. Cell. Endocrinol. 302, 193–202 (2009)

Article  CAS  PubMed  Google Scholar 

A.P. Jayasooriya, M.L. Mathai, L.L. Walker, D.P. Begg, D.A. Denton, D. Cameron-Smith, G.F. Egan, M.J. McKinley, P.D. Rodger, A.J. Sinclair, Mice lacking angiotensin-converting enzyme have increased energy expenditure, with reduced fat mass and improved glucose clearance. Proc. Natl. Acad. Sci. 105, 6531–6536 (2008)

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Herman-Edelstein, T. Guetta, A. Barnea, M. Waldman, N. Ben-Dor, Y.D. Barac, R. Kornowski, M. Arad, E. Hochhauser, D. Aravot, Expression of the SARS-CoV-2 receptorACE2 in human heart is associated with uncontrolled diabetes, obesity, and activation of the renin angiotensin system. Cardiovasc. Diabetol. 20, 1–14 (2021)

Google Scholar 

R. Maurya, P. Sebastian, M. Namdeo, M. Devender, A. Gertler, COVID-19 severity in obesity: leptin and inflammatory cytokine interplay in the link between high morbidity and mortality. Front. Immunol. 12, 2349 (2021)

Article  Google Scholar 

N. Jia, G. Zhang, X. Sun, Y. Wang, S. Zhao, W. Chi, S. Dong, J. Xia, P. Zeng, D. Liu, Influence of angiotensin converting enzyme inhibitors/angiotensin receptor blockers on the risk of all‐cause mortality and other clinical outcomes in patients with confirmed COVID‐19: a systemic review and meta‐analysis. J. Clin. Hypertens 23, 1651–1663 (2021)

Article  CAS  Google Scholar 

A. Kurdi, N. Abutheraa, L. Akil, B. Godman, A systematic review and meta-analysis of the use of renin-angiotensin system drugs and COVID-19 clinical outcomes: What is the evidence so far? Pharmacol. Res. Perspect. 8, e00666 (2020). https://doi.org/10.1002/prp2.666

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Shang, Y. Wan, C. Luo, G. Ye, Q. Geng, A. Auerbach, F. Li, Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad Sci. 117, 11727–11734 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Hoffmann, H. Kleine-Weber, S. Pöhlmann, A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78, 779–784 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

T. Tang, J.A. Jaimes, M.K. Bidon, M.R. Straus, S. Daniel, G.R. Whittaker, Proteolytic activation of SARS-CoV-2 spike at the S1/S2 boundary: potential role of proteases beyond furin. ACS Infect. Dis. 7, 264–272 (2021)

Article  CAS  PubMed  Google Scholar 

S.K. Ganesan, P. Venkatratnam, J. Mahendra, N. Devarajan, Increased mortality of COVID-19 infected diabetes patients: role of furin proteases. Int. J Obes. 44, 2486–2488 (2020)

Article  CAS  Google Scholar 

M. Örd, I. Faustova, M. Loog, The sequence at Spike S1/S2 site enables cleavage by furin and phospho-regulation in SARS-CoV2 but not in SARS-CoV1 or MERS-CoV. Sci. Rep. 10, 1–10 (2020)

Article  Google Scholar 

C. Wu, M. Zheng, Y. Yang, X. Gu, K. Yang, M. Li, Y. Liu, Q. Zhang, P. Zhang, Y. Wang, Furin: a potential therapeutic target for COVID-19. Iscience 23, 101642 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

B. Coutard, C. Valle, X. de Lamballerie, B. Canard, N.G. Seidah, E. Decroly, The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir. Res. 176, 104742 (2020)

Article  CAS  PubMed  Google Scholar 

C. Fernandez, J. Rysä, P. Almgren, J. Nilsson, G. Engström, M. Orho‐Melander, H. Ruskoaho, O. Melander, Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J. Intern. Med. 284, 377–387 (2018)

Article  CAS  PubMed  PubMed Central  Google Scholar 

S.A. Fathy, F.F. Abdel Hamid, B.M. Zabut, A.F. Jamee, M.A. Ali, A.M. Abu, Mustafa Diagnostic utility of BNP, corin and furin as biomarkers for cardiovascular complications in type 2 diabetes mellitus patients. Biomarkers 20, 460–469 (2015)

Article  CAS  PubMed  Google Scholar 

J. Shin, S. Toyoda, S. Nishitani, A. Fukuhara, S. Kita, M. Otsuki, I. Shimomura, Possible involvement of adipose tissue in patients with older age, obesity, and diabetes with SARS-CoV-2 infection (COVID-19) via GRP78 (BIP/HSPA5): significance of hyperinsulinemia management in COVID-19. Diabetes 70, 2745–2755 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

R. Sabirli, A. Koseler, T. Goren, I. Turkcuer, O. Kurt, High GRP78 levels in Covid-19 infection: a case-control study. Life Sci 265, 118781 (2021)

Article  CAS  PubMed  Google Scholar 

Y. Liu, Y. Pan, Y. Yin, W. Chen, X. Li, Association of dyslipidemia with the severity and mortality of coronavirus disease 2019 (COVID-19): A meta-analysis. Virol. J. 18, 1–11 (2021)

Article  Google Scholar 

R. Menghini, L. Fiorentino, V. Casagrande, R. Lauro, M. Federici, The role of ADAM17 in metabolic inflammation. Atherosclerosis 228, 12–17 (2013)

Article  CAS  PubMed  Google Scholar 

J. Matthews, S. Villescas, L. Herat, M. Schlaich, V. Matthews, Implications of ADAM17 activation for hyperglycaemia, obesity and type 2 diabetes. Biosci. Rep. 41(5), BSR20210029 (2021). https://doi.org/10.1042/BSR20210029

Article  CAS  PubMed  PubMed Central  Google Scholar 

C.C. Bailey, G. Zhong, I.-C. Huang, M. Farzan, IFITM-family proteins: the cell’s first line of antiviral defense. Annu. Rev. Virol. 1, 261 (2014)

Article  PubMed  PubMed Central  Google Scholar 

C.C. Bailey, G. Zhong, I.-C. Huang, M. Farzan, IFITM-family proteins: the cell’s first line of antiviral defense. Annu. Rev. Virol. 1, 261 (2014)

留言 (0)

沒有登入
gif