Effects of sodium-glucose cotransporter 2 inhibitors on renal risk factors in patients with abnormal glucose metabolism: a meta-analysis of randomized controlled trials

Huang W, Chen YY, Li ZQ, He FF, Zhang C (2022) Recent advances in the emerging therapeutic strategies for diabetic kidney diseases. Int J Mol Sci 23(18). https://doi.org/10.3390/ijms231810882

Bakris GL, Fonseca VA, Sharma K, Wright EM (2009) Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int 75(12):1272–1277. https://doi.org/10.1038/ki.2009.87

Tamez-Perez HE, Delgadillo-Esteban E, Soni-Duque D, Hernández-Coria MI, Tamez-Peña AL (2017) SGLT2 inhibitors as add on therapy in type 2 diabetes: a real world study. J Diabetes Metab Disord 16:27. https://doi.org/10.1186/s40200-017-0308-4

Kim NH, Kim NH (2022) Renoprotective Mechanism of sodium-glucose cotransporter 2 inhibitors: focusing on renal hemodynamics. Diabetes Metab J 46(4):543–551. https://doi.org/10.4093/dmj.2022.0209

Akbari A, Rafiee M, Sathyapalan T, Sahebkar A (2022) Impacts of sodium/glucose cotransporter-2 inhibitors on circulating uric acid concentrations: a systematic review and meta-analysis. J Diabetes Res 2022:7520632. https://doi.org/10.1155/2022/7520632

Wu B, Zheng H, Gu J, Guo Y, Liu Y, Wang Y, Chen F, Yang A, Wang J, Wang H, Liu Y, Wang D (2019) Effects of sodium-glucose cotransporter 2 inhibitors in addition to insulin therapy on cardiovascular risk factors in type 2 diabetes patients: a meta-analysis of randomized controlled trials. J Diabetes Investig 10(2):446–457. https://doi.org/10.1111/jdi.12876

Zhang M, Zhang L, Wu B, Song H, An Z, Li S (2014) Dapagliflozin treatment for type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Res Rev 30(3):204–221. https://doi.org/10.1002/dmrr.2479

Zhao D, Liu H, Dong P (2019) Empagliflozin reduces blood pressure and uric acid in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J Hum Hypertens 33(4):327–339. https://doi.org/10.1038/s41371-018-0134-2

Zhao Y, Xu L, Tian D, Xia P, Zheng H, Wang L, Chen L (2018) Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes Metab 20(2):458–462. https://doi.org/10.1111/dom.13101

Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928. https://doi.org/10.1136/bmj.d5928

Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. https://doi.org/10.1002/sim.1186

Nakaguchi H, Kondo Y, Kyohara M, Konishi H, Oiwa K, Terauchi Y (2020) Effects of liraglutide and empagliflozin added to insulin therapy in patients with type 2 diabetes: a randomized controlled study. J Diabetes Investig 11(6):1542–1550. https://doi.org/10.1111/jdi.13270

Ji P, Zhu J, Feng J, Li H, Yu Q, Qin H, Wei L, Zhang J (2022) Serum uric acid levels and diabetic kidney disease in patients with type 2 diabetes mellitus: a dose-response meta-analysis. Prim Care Diabetes 16(3):457–465. https://doi.org/10.1016/j.pcd.2022.03.003

Kocak MZ, Aktas G, Duman TT, Atak BM, Savli H (2019) Is uric acid elevation a random finding or a causative agent of diabetic nephropathy? Rev Assoc Med Bras (1992) 65(9):1155–1160. https://doi.org/10.1590/1806-9282.65.9.1156

Li GX, Jiao XH, Cheng XB (2018) Correlations between blood uric acid and the incidence and progression of type 2 diabetes nephropathy. Eur Rev Med Pharmacol Sci 22(2):506–511. https://doi.org/10.26355/eurrev_201801_14202

Guarda NS, Bollick YS, de Carvalho JAM, Premaor MO, Comim FV, Moresco RN (2019) High serum uric acid is associated with tubular damage and kidney inflammation in patients with type 2 diabetes. Dis Markers 2019:6025804. https://doi.org/10.1155/2019/6025804

Suijk DL, Smits MM, Muskiet MH, Tonneijck L, Kramer MH, Joles JA, van Raalte DH (2020) Plasma uric acid and renal haemodynamics in type 2 diabetes patients. Nephrology (Carlton) 25(4):290–297. https://doi.org/10.1111/nep.13645

Xia Q, Zhang SH, Yang SM, Zhu XL, Su S, Hu AP, Zhu J, Li DM (2020) Serum uric acid is independently associated with diabetic nephropathy but not diabetic retinopathy in patients with type 2 diabetes mellitus. J Chin Med Assoc 83(4):350–356. https://doi.org/10.1097/jcma.0000000000000285

Chen MY, Wang AP, Wang JW, Ke JF, Yu TP, Li LX, Jia WP (2019) Coexistence of hyper-uricaemia and low urinary uric acid excretion further increases risk of chronic kidney disease in type 2 diabetes. Diabetes Metab 45(6):557–563. https://doi.org/10.1016/j.diabet.2019.03.001

Hanai K, Tauchi E, Nishiwaki Y, Mori T, Yokoyama Y, Uchigata Y, Babazono T (2019) Effects of uric acid on kidney function decline differ depending on baseline kidney function in type 2 diabetic patients. Nephrol Dial Transplant 34(8):1328–1335. https://doi.org/10.1093/ndt/gfy138

Shibata Y, Yamazaki M, Kitahara J, Okubo Y, Oiwa A, Sato A, Komatsu M (2021) Changes in serum uric acid levels as a predictor of future decline in renal function in older adults with type 2 diabetes. Medicine (Baltimore) 100(40):e27420. https://doi.org/10.1097/md.0000000000027420

Tiku A, Johnson DW, Badve SV (2021) Recent evidence on the effect of urate-lowering treatment on the progression of kidney disease. Curr Opin Nephrol Hypertens 30(3):346–352. https://doi.org/10.1097/mnh.0000000000000699

Watanabe K, Nakayama M, Yamamoto T, Yamada G, Sato H, Miyazaki M, Ito S (2021) Different clinical impact of hyperuricemia according to etiologies of chronic kidney disease: Gonryo Study. PLoS One 16(3):e0249240. https://doi.org/10.1371/journal.pone.0249240

Li S, Sanna S, Maschio A, Busonero F, Usala G, Mulas A, Lai S, Dei M, Orrù M, Albai G, Bandinelli S, Schlessinger D, Lakatta E, Scuteri A, Najjar SS, Guralnik J, Naitza S, Crisponi L, Cao A, Abecasis G, Ferrucci L, Uda M, Chen WM, Nagaraja R (2007) The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet 3(11):e194. https://doi.org/10.1371/journal.pgen.0030194

Musso G, Gambino R, Cassader M, Pagano G (2012) A novel approach to control hyperglycemia in type 2 diabetes: sodium glucose co-transport (SGLT) inhibitors: systematic review and meta-analysis of randomized trials. Ann Med 44(4):375–393. https://doi.org/10.3109/07853890.2011.560181

Kittiskulnam P, Kanjanabuch T, Tangmanjitjaroen K, Chancharoenthana W, Praditpornsilpa K, Eiam-Ong S (2014) The beneficial effects of weight reduction in overweight patients with chronic proteinuric immunoglobulin a nephropathy: a randomized controlled trial. J Ren Nutr 24(3):200–207. https://doi.org/10.1053/j.jrn.2014.01.016

Sjöström CD, Hashemi M, Sugg J, Ptaszynska A, Johnsson E (2015) Dapagliflozin-induced weight loss affects 24-week glycated haemoglobin and blood pressure levels. Diabetes Obes Metab 17(8):809–812. https://doi.org/10.1111/dom.12500

Bolinder J, Ljunggren Ö, Kullberg J, Johansson L, Wilding J, Langkilde AM, Sugg J, Parikh S (2012) Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab 97(3):1020–1031. https://doi.org/10.1210/jc.2011-2260

Kassi E, Dalamaga M, Hroussalas G, Kazanis K, Merantzi G, Zachari A, Giamarellos-Bourboulis EJ, Dionyssiou-Asteriou A (2010) Adipocyte factors, high-sensitive C-reactive protein levels and lipoxidative stress products in overweight postmenopausal women with normal and impaired OGTT. Maturitas 67(1):72–77. https://doi.org/10.1016/j.maturitas.2010.05.004

Arany Z (2019) Taking a BAT to the chains of diabetes. N Engl J Med 381(23):2270–2272. https://doi.org/10.1056/NEJMcibr1911353

Zhang L, Feng Y, List J, Kasichayanula S, Pfister M (2010) Dapagliflozin treatment in patients with different stages of type 2 diabetes mellitus: effects on glycaemic control and body weight. Diabetes Obes Metab 12(6):510–516. https://doi.org/10.1111/j.1463-1326.2010.01216.x

Huh Y, Kim YS (2022) Predictors for successful weight reduction during treatment with dapagliflozin among patients with type 2 diabetes mellitus in primary care. BMC Prim Care 23(1):134. https://doi.org/10.1186/s12875-022-01748-1

Chalmoukou K, Polyzos D, Manta E, Tatakis F, Konstantinidis D, Thomopoulos C, Costas T (2022) Renal outcomes associated with glucose-lowering agents: systematic review and meta-analysis of randomized outcome trials. Eur J Intern Med 97:78–85. https://doi.org/10.1016/j.ejim.2021.12.018

Wilding J, Fernando K, Milne N, Evans M, Ali A, Bain S, Hicks D, James J, Newland-Jones P, Patel D, Viljoen A (2018) SGLT2 inhibitors in type 2 diabetes management: key evidence and implications for clinical practice. Diabetes Ther 9(5):1757–1773. https://doi.org/10.1007/s13300-018-0471-8

Scheen AJ (2015) Pharmacokinetics, pharmacodynamics and clinical use of SGLT2 inhibitors in patients with type 2 diabetes mellitus and chronic kidney disease. Clin Pharmacokinet 54(7):691–708. https://doi.org/10.1007/s40262-015-0264-4

Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375(4):323–334. https://doi.org/10.1056/NEJMoa1515920

Jongs N, Chertow GM, Greene T, McMurray JJV, Langkilde AM, Correa-Rotter R, Kashihara N, Rossing P, Sjöström CD, Stefánsson BV, Toto RD, Wheeler DC, Heerspink HJL (2022) Correlates and consequences of an acute change in eGFR in response to the SGLT2 inhibitor Dapagliflozin in patients with CKD. J Am Soc Nephrol 33(11):2094–2107. https://doi.org/10.1681/asn.2022030306

Meraz-Muñoz AY, Weinstein J, Wald R (2021) eGFR Decline after SGLT2 inhibitor initiation: the tortoise and the hare reimagined. Kidney360 2(6):1042–1047. https://doi.org/10.34067/kid.0001172021

Zannad F, Ferreira JP, Gregson J, Kraus BJ, Mattheus M, Hauske SJ, Butler J, Filippatos G, Wanner C, Anker SD, Pocock SJ, Packer M (2022) Early changes in estimated glomerular filtration rate post-initiation of empagliflozin in EMPEROR-Reduced. Eur J Heart Fail 24(10):1829–1839. https://doi.org/10.1002/ejhf.2578

Vallon V, Thomson SC (2017) Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 60(2):215–225. https://doi.org/10.1007/s00125-016-4157-3

Hao Z, Huang X, Shao H, Tian F (2018) Effects of dapagliflozin on serum uric acid levels in hospitalized type 2 diabetic patients with inadequate glycemic control: a randomized controlled trial. Ther Clin Risk Manag 14:2407–2413. https://doi.org/10.2147/tcrm.S186347

Huang Y, Lu W, Lu H (2022) The clinical efficacy and safety of dapagliflozin in patients with diabetic nephropathy. Diabetol Metab Syndr 14(1):47. https://doi.org/10.1186/s13098-022-00815-y

Hussain M, Elahi A, Hussain A, Iqbal J, Akhtar L, Majid A (2021) Sodium-glucose cotransporter-2 (SGLT-2) attenuates serum uric acid (SUA) level in patients with type 2 diabetes. J Diabetes Res 2021:9973862. https://doi.org/10.1155/2021/9973862

Tanaka M, Yamakage H, Inoue T, Odori S, Kusakabe T, Shimatsu A, Satoh-Asahara N (2020) Beneficial effects of ipragliflozin on the renal function and serum uric acid levels in Japanese patients with type 2 diabetes: a randomized, 12-week, open-label, active-controlled trial. Intern Med 59(5):601–609. https://doi.org/10.2169/internalmedicine.3473-19

Okada K, Hoshide S, Kato M, Kanegae H, Ishibashi S, Kario K (2021) Safety and efficacy of empagliflozin in elderly Japanese patients with type 2 diabetes mellitus: a post hoc analysis of data from the SACRA study. J Clin Hypertens (Greenwich) 23(4):860–869. https://doi.org/10.1111/jch.14131

Satirapoj B, Korkiatpitak P, Supasyndh O (2019) Effect of sodium-glucose cotransporter 2 inhibitor on proximal tubular function and injury in patients with type 2 diabetes: a randomized controlled trial. Clin Kidney J 12(3):326–332. https://doi.org/10.1093/ckj/sfy122

Ramirez-Rodriguez AM, Gonzalez-Ortiz M, Martinez-Abundis E (2020) Effect of dapagliflozin on insulin secretion and insulin sensitivity in patients with prediabetes. Exp Clin Endocrinol Diabetes 128(8):506–511. https://doi.org/10.1055/a-0664-7583

Shimizu W, Kubota Y, Hoshika Y, Mozawa K, Tara S, Tokita Y, Yodogawa K, Iwasaki YK, Yamamoto T, Takano H, Tsukada Y, Asai K, Miyamoto M, Miyauchi Y, Kodani E, Ishikawa M, Maruyama M, Ogano M, Tanabe J, investigators Et (2020) Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: the EMBODY trial. Cardiovasc Diabetol 19(1):148. https://doi.org/10.1186/s12933-020-01127-z

Hiruma S, Shigiyama F, Hisatake S, Mizumura S, Shiraga N, Hori M, Ikeda T, Hirose T, Kumashiro N (2021) A prospective randomized study comparing effects of empagliflozin to sitagliptin on cardiac fat accumulation, cardiac function, and cardiac metabolism in patients with early-stage type 2 diabetes: the ASSET study. Cardiovasc Diabetol 20(1):32. https://doi.org/10.1186/s12933-021-01228-3

Pollock C, Stefansson B, Reyner D, Rossing P, Sjostrom CD, Wheeler DC, Langkilde AM, Heerspink HJL (2019) Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 7(6):429–441. https://doi.org/10.1016/S2213-8587(19)30086-5

留言 (0)

沒有登入
gif