Identifying yield-related genes in maize based on ear trait plasticity

Qurat-Ul A, Awais R, Alia A, Tariq M, Muhammad I, Tariq M, Xia X, He Z, Quraishi UM. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front Plant Sci. 2015;6:743.

Google Scholar 

Gedik MA, Günel T. The impact of climate change on edible food production: a panel data analysis. Acta Agr Scand B-S P. 2021;71:318–23.

Google Scholar 

Hutchins DA, Jansson JK, Remais JV, Rich VI, Singh BK, Trivedi P. Climate change microbiology—problems and perspectives. Nat Rev Microbiol. 2019;17:391–6.

Article  CAS  PubMed  Google Scholar 

Hatfield JL, Antle J, Garrett KA, Izaurralde RC, Mader T, Marshall E, et al. Indicators of climate change in agricultural systems. Clim Change. 2020;163:1719–32.

Article  Google Scholar 

Sultan S. Phenotypic plasticity for plant development, function and life history. Front Plant Sci. 2000;5:537–42.

CAS  Google Scholar 

Des Marais DL, Hernandez KM, Juenger TE. Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annu Rev Ecol Evol Syst. 2013;44:5–29.

Article  Google Scholar 

Kusmec A, Srinivasan S, Dan N, Schnable PS. Distinct genetic architectures for phenotype means and plasticities in Zea mays. Nat Plants. 2017;3:715–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bradshaw AD. Evolutionary significance of phenotypic plasticity in plants. Adv Genet. 1965;13:115–55.

Article  Google Scholar 

Pigliucci M. Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol. 2005;20:481–6.

Article  PubMed  Google Scholar 

Gage JL, Jarquin D, Romay C, Lorenz A, Buckler ES, Kaeppler S, Alkhalifah N, Bohn M, Campbell DA, Edwards J, et al. The effect of artificial selection on phenotypic plasticity in maize. Nat Commun. 2017;8:1348.

Article  PubMed  PubMed Central  Google Scholar 

Liu N, Du Y, Warburton ML, Xiao Y, Yan J. Phenotypic plasticity contributes to maize adaptation and heterosis. Mol Biol Evol. 2020;38:1276–91.

Google Scholar 

Wang Y, Mette MF, Miedaner T, Wilde P, Reif JC, Zhao Y. First insights into the genotype–phenotype map of phenotypic stability in rye. J Exp Bot. 2015;66:3275–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang M, Cabrera A, Hoffstetter A, Griffey C, Van Sanford D, Costa J, McKendry A, Chao S, Sneller C. Genomic selection for wheat traits and trait stability. Theor Appl Genet. 2016;129:1697–710.

Article  CAS  PubMed  Google Scholar 

Moshelion M, Altman A. Current challenges and future perspectives of plant and agricultural biotechnology. Rends Biotechnol. 2015;33:337–42.

CAS  Google Scholar 

Rustgi S, Luo H. Biolistic DNA delivery in plants. New York: Springer; 2020.

Book  Google Scholar 

Wu J, Lawit SJ, Weers B, Sun J, Mongar N, Van Hemert J, Melo R, Meng X, Rupe M, Clapp J, et al. Overexpression of zmm28 increases maize grain yield in the field. P Natl Acad Sci USA. 2019;116:23850–8.

Article  CAS  Google Scholar 

Eltaher S, Baenziger PS, Belamkar V, Emara HA, Sallam A. GWAS revealed effect of genotype × environment interactions for grain yield of Nebraska winter wheat. BMC Genomics. 2021;22:2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Messmer R, Fracheboud Y, Bänziger M, Vargas M, Stamp P, Ribaut JM. Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet. 2009;119:913–30.

Article  PubMed  Google Scholar 

Yan J, Tang H, Huang Y, Zheng Y, Li J. Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica. 2006;149:121–31.

Article  CAS  Google Scholar 

Peng B, Li Y, Wang Y, Liu C, Liu Z, Tan W, Zhang Y, Wang D, Shi Y, Sun B, et al. QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet. 2011;122:1305–20.

Article  PubMed  Google Scholar 

Shi Z, Zhang R, Xing J, Duan M, Wang Y, Su A, Wang F, Xu L, Tian H, Wang J, et al. QTL mapping of three ear traits using a doubled haploid population of maize. Plant Breeding. 2018;137:706–13.

Article  CAS  Google Scholar 

Ning Q, Jian Y, Du Y, Li Y, Shen X, Jia H, Zhao R, Zhan J, Yang F, Jackson D, et al. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nat Comm. 2021;12:1–10.

Article  Google Scholar 

Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J. 2005;44:1054–64.

Article  CAS  PubMed  Google Scholar 

Liu Y, Wang L, Sun C, Zhang Z, Zheng Y, Qiu F. Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet. 2014;127:1019–37.

Article  CAS  PubMed  Google Scholar 

Upadyayula N, Da Silva H, Bohn MO, Rocheford T. Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor Appl Genet. 2006;112:592–606.

Article  CAS  PubMed  Google Scholar 

Tanabata T, Shibaya T, Hori K, Ebana K, Yano M. SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiol. 2012;160:1871–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller ND, Haase NJ, Lee J, Kaeppler SM, de Leon N, Spalding EP. A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images. Plant J. 2017;89:169–78.

Article  CAS  PubMed  Google Scholar 

Warman C, Sullivan CM, Preece J, Buchanan ME, Vejlupkova Z, Jaiswal P, Fowler JE. A cost-effective maize ear phenotyping platform enables rapid categorization and quantification of kernels. Plant J. 2021;106:566–79.

Article  CAS  PubMed  Google Scholar 

Kalantar-Zadeh K. Sensors: an introductory course. Boston: Springer US; 2013.

Cao Y, Zhang M, Liang X, Li F, Shi Y, Yang X, et al. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline-alkaline tolerance in maize. Nat Comm. 2020;11:1–14.

Google Scholar 

Wang Y, Zhao Y, Wang S, Liu J, Wang X, Han Y, et al. Up-regulated 2-alkenal reductase expression improves low-nitrogen tolerance in maize by alleviating oxidative stress. Plant Cell Environ. 2021;44:559–73.

Article  CAS  PubMed  Google Scholar 

Gao Y, Wu W, Wang Y. The K+ channel KZM 2 is involved in stomatal movement by modulating inward K+ currents in maize guard cells. Plant J. 2017;92:662–75.

Article  CAS  PubMed  Google Scholar 

Gao Y, Wu W, Wang Y. Electrophysiological identification and activity analyses of plasma membrane K+ channels in maize guard cells. Plant Cell Physiol. 2019;60:765–77.

Article  CAS  PubMed  Google Scholar 

Zhang Q, Zhang Y, Lu M, Chai Y, Jiang Y, Zhou Y, et al. A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize. Plant Physiol. 2019;181:1441–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lian L, Gustavo de los C. FW: An R package for Finlay–Wilkinson regression that incorporates genomic/pedigree information and covariance structures between environments. G3-Genes Genom Genet. 2016;6:589–597.

Yadava P, Abhishek A, Singh R, Singh I, Kaul T, Pattanayak A, Agrawal PK. Advances in maize transformation technologies and development of transgenic maize. Front Plant Sci. 2017;7:1949.

Article  PubMed  PubMed Central  Google Scholar 

Wang J, Zhang Z. GAPIT Version 3: boosting power and accuracy for genomic association and prediction. Genom Proteom Bioinf. 2021;19:629–40.

Article  Google Scholar 

Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BBH. Breeding crops to feed 10 billion. Nat Biotechnol. 2019;37:744–54.

Article  CAS  PubMed  Google Scholar 

Makanza R, Zaman-Allah M, Cairns JE, Eyre J, Burgueño J, Pacheco Á, Diepenbrock C, Magorokosho C, Tarekegne A, Olsen M, et al. High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging. Plant Methods. 2018;14:49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma L, Zhang M, Chen J, Qing C, He S, Zou C, et al. GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings. Theor Appl Genet. 2021;134:3305–18.

Article  CAS  PubMed  Google Scholar 

Jia Z, Yang X, Hou X, Nie Y, Wu J. The importance of a genome-wide association analysis in the study of alternative splicing mutations in plants with a special focus on maize. Int J Mol Sci. 2022;23:4201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song K, Kim HC, Shin S, Kim KH, Moon JC, Kim JY, et al. Transcriptome analysis of flowering time genes under drought stress in maize leaves. Front Plant Sci. 2017;8:267.

留言 (0)

沒有登入
gif