Click chemistry: a transformative technology in nuclear medicine

Nevelius, E. The Nobel Prize in Chemistry 2022; https://www.nobelprize.org/prizes/chemistry/2022/press-release/ (2023)

Meldal, M. & Tornoe, C. W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 108, 2952–3015 (2008).

Article  CAS  PubMed  Google Scholar 

Huisgen, R. Centenary lecture—1,3-dipolar cycloadditions. Proc. Chem. Soc., 357–396, (1961).

Jewett, J. C. & Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Devaraj, N. K. The future of bioorthogonal chemistry. ACS Cent. Sci. 4, 952–959 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blackman, M. L., Royzen, M. & Fox, J. M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 130, 13518–13519 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeglis, B. M. & Lewis, J. S. Click here for better chemistry. N. Engl. J. Med. https://doi.org/10.1056/NEJMcibr2213596 (2022).

Meyer, J. P., Adumeau, P., Lewis, J. S. & Zeglis, B. M. Click chemistry and radiochemistry: the first 10 years. Bioconjug. Chem. 27, 2791–2807 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng, D., Zeglis, B. M., Lewis, J. S. & Anderson, C. J. The growing impact of bioorthogonal click chemistry on the development of radiopharmaceuticals. J. Nucl. Med. 54, 829–832 (2013).

Article  CAS  PubMed  Google Scholar 

Wangler, C., Schirrmacher, R., Bartenstein, P. & Wangler, B. Click-chemistry reactions in radiopharmaceutical chemistry: fast & easy introduction of radiolabels into biomolecules for in vivo imaging. Curr. Med. Chem. 17, 1092–1116 (2010).

Article  CAS  PubMed  Google Scholar 

Mamat, C., Ramenda, T. & Wuest, F. Recent applications of click chemistry for the synthesis of radiotracers for molecular imaging. Mini Rev. Org. Chem. 6, 21–34 (2009).

Article  CAS  Google Scholar 

Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

Article  CAS  Google Scholar 

Marik, J. & Sutcliffe, J. L. Click for PET: rapid preparation of [18F]fluoropeptides using CuI catalyzed 1,3-dipolar cycloaddition. Tetrahedron Lett. 47, 6681–6684 (2006).

Article  CAS  Google Scholar 

Glaser, M. & Arstad, E. “Click labeling” with 2-[18F]fluoroethylazide for positron emission tomography. Bioconjug. Chem. 18, 989–993 (2007).

Article  CAS  PubMed  Google Scholar 

Wang, Y., Weng, J., Lin, J., Ye, D. & Zhang, Y. NIR scaffold bearing three handles for biocompatible sequential click installation of multiple functional arms. J. Am. Chem. Soc. 142, 2787–2794 (2020).

Article  CAS  PubMed  Google Scholar 

Pisaneschi, F. et al. Automated, resin-based method to enhance the specific activity of fluorine-18 clicked PET radiotracers. Bioconjug. Chem. 28, 583–589 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kluba, C. A. & Mindt, T. L. Click-to-chelate: development of technetium and rhenium-tricarbonyl labeled radiopharmaceuticals. Molecules 18, 3206–3226 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan, R. et al. A one-pot three-component radiochemical reaction for rapid assembly of 125I-labeled molecular probes. J. Am. Chem. Soc. 135, 703–709 (2013).

Article  CAS  PubMed  Google Scholar 

Denk, C. et al. Multifunctional clickable reagents for rapid bioorthogonal astatination and radio-crosslinking. ChemPlusChem 84, 774 (2019).

Article  CAS  PubMed  Google Scholar 

Doss, M. et al. Biodistribution and radiation dosimetry of the integrin marker 18F-RGD-K5 determined from whole-body PET/CT in monkeys and humans. J. Nucl. Med. 53, 787–795 (2012).

Article  PubMed  Google Scholar 

Dubash, S. R. et al. Clinical translation of a click-labeled 18F-octreotate radioligand for imaging neuroendocrine tumors. J. Nucl. Med. 57, 1207–1213 (2016).

Article  CAS  PubMed  Google Scholar 

Quigley, N. G. et al. PET/CT imaging of head-and-neck and pancreatic cancer in humans by targeting the “Cancer Integrin” alphavbeta6 with Ga-68-Trivehexin. Eur. J. Nucl. Med. Mol. Imaging 49, 1136–1147 (2022).

Article  CAS  PubMed  Google Scholar 

Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

Article  CAS  PubMed  Google Scholar 

Campbell-Verduyn, L. S. et al. Strain-promoted copper-free “click” chemistry for 18F radiolabeling of bombesin. Angew. Chem. Int. Ed. 50, 11117–11120 (2011).

Article  CAS  Google Scholar 

Zeng, D. et al. 64Cu core-labeled nanoparticles with high specific activity via metal-free click chemistry. ACS Nano 6, 5209–5219 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai, Z. et al. 64Cu-labeled somatostatin analogues conjugated with cross-bridged phosphonate-based chelators via strain-promoted click chemistry for PET imaging: in silico through in vivo studies. J. Med. Chem. 57, 6019–6029 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agarwal, P. & Bertozzi, C. R. Site-specific antibody–drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug. Chem. 26, 176–192 (2015).

Article  CAS  PubMed  Google Scholar 

Wu, Y. et al. Synthesis of site-specific radiolabeled antibodies for radioimmunotherapy via genetic code expansion. Bioconjug. Chem. 27, 2460–2468 (2016).

Article  CAS  PubMed  Google Scholar 

Ahn, S. H. et al. Site-specific 89Zr- and 111In-radiolabeling and in vivo evaluation of glycan-free antibodies by azide-alkyne cycloaddition with a non-natural amino acid. Bioconjug. Chem. 31, 1177–1187 (2020).

Article  CAS  PubMed  Google Scholar 

Vivier, D. et al. The influence of glycans-specific bioconjugation on the Fcgamma RI binding and in vivo performance of 89Zr-DFO-pertuzumab. Theranostics 10, 1746–1757 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarrett, S. M. et al. Lysine-directed site-selective bioconjugation for the creation of radioimmunoconjugates. Bioconjug. Chem. 33, 1750–1760 (2022).

Article  CAS  PubMed  Google Scholar 

Mamat, C., Gott, M. & Steinbach, J. Recent progress using the Staudinger ligation for radiolabeling applications. J. Label. Comp. Radiopharm. 61, 165–178 (2018).

Article  CAS  Google Scholar 

Narayanam, M. K. et al. Positron emission tomography tracer design of targeted synthetic peptides via 18F-sydnone alkyne cycloaddition. Bioconjug. Chem. 32, 2073–2082 (2021).

Article  CAS  PubMed  Google Scholar 

Steinkopf, W. Über aromatische sulfofluoride. J. Prakt. Chem. 117, 1–82 (1927).

Article  CAS  Google Scholar 

Zheng, Q. et al. Sulfur [18F]fluoride exchange click chemistry enabled ultrafast late-stage radiosynthesis. J. Am. Chem. Soc. 143, 3753–3763 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakamoto, Y. et al. Expanding the applicability of the metal labeling of biomolecules by the RIKEN click reaction: a case study with gallium-68 positron emission tomography. ChemBioChem 19, 2055–2060 (2018).

Article  CAS  PubMed  Google Scholar 

Zeglis, B. M. et al. Modular strategy for the construction of radiometalated antibodies for positron emission tomography based on inverse electron demand Diels–Alder click chemistry. Bioconjug. Chem. 22, 2048–2059 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Z. et al. Tetrazine-trans-cyclooctene ligation for the rapid construction of 18F labeled probes. Chem. Commun. 46, 8043–8045 (2010).

Article  CAS  Google Scholar 

Rashidian, M. et al. The use of 18F-2-fluorodeoxyglucose (FDG) to label antibody fragments for immuno-PET of pancreatic cancer. ACS Cent. Sci. 1, 142–147 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif