Biofilm and wound healing: from bench to bedside

Heukelekian H, Heller A. Relation between food concentration and surface for bacterial growth. J Bacteriol. 1940;40:547–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geesey GG, Richardson WT, Yeomans HG, Irvin RT, Costerton JW. Microscopic examination of natural sessile bacterial populations from an alpine stream. Can J Microbiol. 1977;23(12):1733–6. https://doi.org/10.1139/m77-249.

Article  CAS  PubMed  Google Scholar 

Jones HC, Roth IL, Saunders WM III. Electron microscopic study of a slime layer. J Bacteriol. 1969;99:316–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Characklis WG. Attached microbial growths-II Frictional resistance due to microbial slimes. Water Res. 1973;7:1249–58.

Article  CAS  Google Scholar 

Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am. 1978;238(1):86–95. https://doi.org/10.1038/scientificamerican0178-86.

Article  CAS  PubMed  Google Scholar 

Socransky SS, Haffajee AD. Dental biofilms: difficult therapeutic targets. Periodontol. 2000;2002(28):12–55. https://doi.org/10.1034/j.1600-0757.2002.280102.x.

Article  Google Scholar 

Tatakis DN, Kumar PS. Etiology and pathogenesis of periodontal diseases in periodontology: present status and future concepts. Dent Clin North Am. 2005;49:493–7.

Article  Google Scholar 

Processor JI. Quorum Sensing in biofilms. Dental Plaque revisited. In: Newman HN, Wilson M, editors. Cardiff: Bioline; 1999. pp. 79–88

Percival SL, Hill KE, Williams DW, Hooper SJ, Thomas DW, Costerton JW. A review of the scientific evidence for biofilms in wounds. Wound Repair Regen. 2012;20(5):647–57. https://doi.org/10.1111/j.1524-475X.2012.00836.x.

Article  PubMed  Google Scholar 

Peyyala R, Ebersole JL. Multispecies biofilms and host responses: “discriminating the trees from the forest.” Cytokine. 2013;61(1):15–25. https://doi.org/10.1016/j.cyto.2012.10.006.

Article  CAS  PubMed  Google Scholar 

Pathare NA, Bal A, Talvalkar GV, Antani DU. Diabetic foot infections: a study of microorganisms associated with the different Wagner grades. Indian J Pathol Microbiol. 1998;41(4):437–41.

CAS  PubMed  Google Scholar 

Gardner SE, Hillis SL, Heilmann K, Segre JA, Grice EA. The neuropathic diabetic foot ulcer microbiome is associated with clinical factors. Diabetes. 2013;62(3):923–30. https://doi.org/10.2337/db12-0771.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother. 2019;112:108615. https://doi.org/10.1016/j.biopha.2019.108615.

Article  CAS  PubMed  Google Scholar 

Biswas S, et al. Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proc Natl Acad Sci USA. 2010;107:6976–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan YC, Roy S, Khanna S, Sen CK. Downregulation of endothelial microRNA-200b supports cutaneous wound angiogenesis by desilencing GATA binding protein 2 and vascular endothelial growth factor receptor 2. Arterioscler Thromb Vasc Biol. 2012;32:1372–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dunyach-Remy C, Cadière A, Richard JL, et al. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE): a promising tool to diagnose bacterial infections in diabetic foot ulcers. Diabetes Metab. 2014;40(6):476–80. https://doi.org/10.1016/j.diabet.2014.03.002.

Article  CAS  PubMed  Google Scholar 

Gajula B, Munnamgi S, Basu S. How bacterial biofilms affect chronic wound healing: a narrative review. Int J Surg. 2020;3(2):e16. https://doi.org/10.1097/GH9.0000000000000016.

Article  Google Scholar 

Peleg AY, Weerarathna T, McCarthy JS, Davis TM. Common infections in diabetes: pathogenesis, management and relationship to glycaemic control. Diabetes Metab Res Rev. 2007;23(1):3–13. https://doi.org/10.1002/dmrr.682.

Article  CAS  PubMed  Google Scholar 

Singh K, Agrawal NK, Gupta SK, Mohan G, Chaturvedi S, Singh K. Decreased expression of heat shock proteins may lead to compromised wound healing in type 2 diabetes mellitus patients. J Diabetes Compl. 2015;29(4):578–88. https://doi.org/10.1016/j.jdiacomp.2015.01.007.

Article  Google Scholar 

Singh K, Agrawal NK, Gupta SK, Mohan G, Chaturvedi S, Singh K. Genetic and epigenetic alterations in Toll like receptor 2 and wound healing impairment in type 2 diabetes patients. J Diabetes Compl. 2015;29(2):222–9. https://doi.org/10.1016/j.jdiacomp.2014.11.015.

Article  Google Scholar 

Smith K, Collier A, Townsend EM, et al. One step closer to understanding the role of bacteria in diabetic foot ulcers: characterising the microbiome of ulcers. BMC Microbiol. 2016;16:54. https://doi.org/10.1186/s12866-016-0665-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rahim K, Saleha S, Zhu X, Huo L, Basit A, Franco OL. Bacterial contribution in chronicity of wounds. Microb Ecol. 2017;73(3):710–21. https://doi.org/10.1007/s00248-016-0867-9.

Article  PubMed  Google Scholar 

Dowd SE, Wolcott RD, Sun Y, McKeehan T, Smith E, Rhoads D. Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS ONE. 2008;3(10):e3326. https://doi.org/10.1371/journal.pone.0003326.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Redel H, Gao Z, Li H, et al. Quantitation and composition of cutaneous microbiota in diabetic and nondiabetic men. J Infect Dis. 2013;207(7):1105–14. https://doi.org/10.1093/infdis/jit005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oates A, Bowling FL, Boulton AJ, McBain AJ. Molecular and culture-based assessment of the microbial diversity of diabetic chronic foot wounds and contralateral skin sites. J Clin Microbiol. 2012;50(7):2263–71. https://doi.org/10.1128/JCM.06599-11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Percival SL, Malone M, Mayer D, Salisbury AM, Schultz G. Role of anaerobes in polymicrobial communities and biofilms complicating diabetic foot ulcers. Int Wound J. 2018;15(5):776–82. https://doi.org/10.1111/iwj.12926.

Article  PubMed  PubMed Central  Google Scholar 

Banerjee T, Das A, Singh A, Bansal R, Basu S. The microflora of chronic diabetic foot ulcers based on culture and molecular examination: a descriptive study. Wound Manag Prev. 2019;65(5):16–23. https://doi.org/10.25270/wmp.2019.5.1623.

Article  PubMed  Google Scholar 

Malone M, Johani K, Jensen SO, et al. Next generation DNA sequencing of tissues from infected diabetic foot ulcers. EBioMedicine. 2017;21:142–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johani K, Malone M, Jensen S, et al. Microscopy visualisation confirms multi-species biofilms are ubiquitous in diabetic foot ulcers. Int Wound J. 2017;14(6):1160–9.

Article  PubMed  PubMed Central  Google Scholar 

Charles PG, Uçkay I, Kressmann B, Emonet S, Lipsky BA. The role of anaerobes in diabetic foot infections. Anaerobe. 2015;34:8–13. https://doi.org/10.1016/j.anaerobe.2015.03.009.

Article  CAS  PubMed  Google Scholar 

Basu S, Ramchuran Panray T, Bali Singh T, Gulati AK, Shukla VK. A prospective, descriptive study to identify the microbiological profile of chronic wounds in outpatients. Ostomy Wound Manage. 2009;55(1):14–20.

PubMed  Google Scholar 

Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev. 2001;14:244–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalan L, Loesche M, Hodkinson BP, Heilmann K, Ruthel G, Gardner SE, Grice EA. Redefining the chronic-wound microbiome: fungal communities are prevalent, dynamic, and associated with delayed healing. MBio. 2016;7:e01058-e1116.

Article  PubMed  PubMed Central  Google Scholar 

Kalan L, Grice EA. Fungi in the wound microbiome. Adv Wound Care. 2018;7:247–55.

Article  Google Scholar 

White R, Cutting K, Kingsley A. Critical colonisation: clinical reality or myth? Wound UK. 2005;1:94–5.

Google Scholar 

Bendy RH, Nuccio PA, Wolfe E, Collins B, Tamburro C, Glass W, Martin CM. Relationship of quantitative wound bacterial counts to healing of decubiti. Effect of topical gentamicin. Antimicrob Agents Chemother. 1964;4:147–55.

Google Scholar 

Breidenbach WC, Trager S. Quantitative culture technique and infection in complex wounds of the extremities closed with free flaps. Plast Reconstr Surg. 1965;95:860–5.

Article  Google Scholar 

Robson MC, Heggers JP. Bacterial quantification of open wounds. Mil Med. 1969;134:19–24.

Article  CAS  PubMed  Google Scholar 

Robson MC. Wound infection. A failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am. 1997;77:637–50.

Article  CAS 

留言 (0)

沒有登入
gif