Factors Affecting the Stability of the Trimer of 2'-Deoxyuridine 5'-Triphosphate Nucleotide Hydrolase from Escherichia coli

Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature. 362, 709–715.

Article  CAS  PubMed  Google Scholar 

Friedberg E.C., Walker G.C., Siede W., Wood R.D., Schultz R.A., Ellenberger T. 2006. DNA Repair and Mutagenesis.Washington, D.C.: ASM Press.

Google Scholar 

Berger S.H., Pittman D.L., Wyatt M.D. 2008. Uracil in DNA: consequences for carcinogenesis and chemotherapy. Biochem. Pharmacol. 76, 697–706.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kavli B., Slupphaug G., Krokan H.E. 2021. Genomic uracil in biology, immunity and cancer. In DNA Damage, DNA Repair and Disease. Dizdaroglu, M., Lloyd, R.S., Eds. London: Royal Soc. Chem., pp. 220–248.

Google Scholar 

Persson R., Cedergren-Zeppezauer E.S., Wilson K.S. 2001. Homotrimeric dUTPases: structural solutions for specific recognition and hydrolysis of dUTP. Curr. Protein Pept. Sci. 2, 287–300.

Article  CAS  PubMed  Google Scholar 

Vértessy B.G., Tóth J. 2009. Keeping uracil out of DNA: physiological role, structure and catalytic mechanism of dUTPases. Acc. Chem. Res. 42, 97–106.

Article  PubMed  PubMed Central  Google Scholar 

Kouzminova E.A., Kuzminov A. 2004. Chromosomal fragmentation in dUTPase-deficient mutants of Escherichia coli and its recombinational repair. Mol. Microbiol. 51, 1279–1295.

Article  CAS  PubMed  Google Scholar 

Kouzminova E.A., Kuzminov A. 2006. Fragmentation of replicating chromosomes triggered by uracil in DNA. J. Mol. Biol. 355, 20–33.

Article  CAS  PubMed  Google Scholar 

Ting H., Kouzminova E.A., Kuzminov A. 2008. Synthetic lethality with the dut defect in Escherichia coli reveals layers of DNA damage of increasing complexity due to uracil incorporation. J. Bacteriol. 190, 5841–5854.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pálinkás H.L., Rácz G.A., Gál Z., Hoffmann O.I., Tihanyi G., Róna G., Gócza E., Hiripi L., Vértessy B.G. 2019. CRISPR/Cas9-mediated knock-out of dUTPase in mice leads to early embryonic lethality. Biomolecules. 9, 136.

Article  PubMed  PubMed Central  Google Scholar 

Cedergren-Zeppezauer E.S., Larsson G., Nyman P.O., Dauter Z., Wilson K.S. 1992. Crystal structure of a dUTPase. Nature. 355, 740–743.

Article  CAS  PubMed  Google Scholar 

Larsson G., Svensson L.A., Nyman P.O. 1996. Crystal structure of the Escherichia coli dUTPase in complex with a substrate analogue (dUDP). Nat. Struct. Biol. 3, 532–538.

Article  CAS  PubMed  Google Scholar 

Mol C.D., Harris J.M., McIntosh E.M., Tainer J.A. 1996. Human dUTP pyrophosphatase: uracil recognition by a β hairpin and active sites formed by three separate subunits. Structure. 4, 1077–1092.

Article  CAS  PubMed  Google Scholar 

González A., Larsson G., Persson R., Cedergren-Zeppezauer E. 2001. Atomic resolution structure of Escherichia coli dUTPase determined ab initio. Acta Crystallogr. D Biol. Crystallogr. 57, 767–774.

Article  PubMed  Google Scholar 

Barabás O., Pongrácz V., Kovári J., Wilmanns M., Vértessy B.G. 2004. Structural insights into the catalytic mechanism of phosphate ester hydrolysis by dUTPase. J. Biol. Chem. 279, 42907–42915.

Article  PubMed  Google Scholar 

Varga B., Barabás O., Kovári J., Tóth J., Hunyadi-Gulyás É., Klement É., Medzihradszky K.F., Tölgyesi F., Fidy J., Vértessy B.G. 2007. Active site closure facilitates juxtaposition of reactant atoms for initiation of catalysis by human dUTPase. FEBS Lett. 581, 4783–4788.

Article  CAS  PubMed  Google Scholar 

Kovári J., Barabás O., Varga B., Békési A., Tölgyesi F., Fidy J., Nagy J., Vértessy B.G. 2008. Methylene substitution at the α–β bridging position within the phosphate chain of dUDP profoundly perturbs ligand accommodation into the dUTPase active site. Proteins. 71, 308–319.

Article  PubMed  Google Scholar 

Benedek A., Temesváry-Kis F., Khatanbaatar T., Leveles I., Surányi É.V., Szabó J.E., Wunderlich L., Vértessy B.G. 2019. The role of a key amino acid position in species-specific proteinaceous dUTPase inhibition. Biomolecules. 9, 221.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larsson G., Nyman P.O., Kvassman J.-O. 1996. Kinetic characterization of dUTPase from Escherichia coli. J. Biol. Chem. 271, 24010–24016.

Article  CAS  PubMed  Google Scholar 

Mustafi D., Bekesi A., Vertessy B.G., Makinen M.W. 2003. Catalytic and structural role of the metal ion in dUTP pyrophosphatase. Proc. Natl Acad. Sci. U. S. A. 100, 5670–5675.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fiser A., Vértessy B.G. 2000. Altered subunit communication in subfamilies of trimeric dUTPases. Biochem. Biophys. Res. Commun. 279, 534–542.

Article  CAS  PubMed  Google Scholar 

Arkin M.R., Wells J.A. 2004. Small-molecule inhibitors of protein–protein interactions: Progressing towards the dream. Nat. Rev. Drug Discov. 3, 301–317.

Article  CAS  PubMed  Google Scholar 

Petta I., Lievens S., Libert C., Tavernier J., De Bosscher K. 2016. Modulation of protein–protein interactions for the development of novel therapeutics. Mol. Ther. 24, 707–718.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Senisterra G., Chau I., Vedadi M. 2012. Thermal denaturation assays in chemical biology. Assay Drug Dev. Technol. 10, 128–136.

Article  CAS  PubMed  Google Scholar 

Magnusson A.O., Szekrenyi A., Joosten H.-J., Finnigan J., Charnock S., Fessner W.-D. 2019. nanoDSF as screening tool for enzyme libraries and biotechnology development. FEBS J. 286, 184–204.

Article  CAS  PubMed  Google Scholar 

Kotov V., Mlynek G., Vesper O., Pletzer M., Wald J., Teixeira-Duarte C.M., Celia H., Garcia-Alai M., Nussberger S., Buchanan S.K., Morais-Cabral J.H., Loew C., Djinovic-Carugo K., Marlovits T.C. 2021. In-depth interrogation of protein thermal unfolding data with MoltenProt. Protein Sci. 30, 201–217.

Article  CAS  PubMed  Google Scholar 

Eftink M.R. 1994. The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys. J. 66, 482–501.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krissinel E., Henrick K. 2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797.

Article  CAS  PubMed  Google Scholar 

Fraczkiewicz R., Braun W. 1998. Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J. Comput. Chem. 19, 319–333.

Article  CAS  Google Scholar 

Vivian J.T., Callis P.R. 2001. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 80, 2093–2109.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshikawa H., Hirano A., Arakawa T., Shiraki K. 2012. Effects of alcohol on the solubility and structure of native and disulfide-modified bovine serum albumin. Int. J. Biol. Macromol. 50, 1286–1291.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif