Effect of Usnic Acid-Derived Tyrosyl-DNA Phosphodiesterase 1 Inhibitor Used as Monotherapy or in Combination with Olaparib on Transplanted Tumors In Vivo

Bezborodova O.A., Nemtsova E.R., Karmakova T.A., Venediktova Yu.B., Pankratov A.A, Alekseenko I.V., Pleshkan V.V., Zinov’eva M.V., Monastyrskaya G.S., Sverdlov E.D., Kaprin A.A. 2019. Current trends in the development of antitumor gene and cell therapy. In Materialy Pervogo Mezhdunarodnogo Foruma onkologii i radiologii, 23–27 sentyabrya 2019 g. Moskva. (Proceedings of the First International Forum of Oncology and Radiology, Moscow, September 23–27, 2019), Moscow, pp. 65–66.

Curtin N.J., Szabo C. 2020. Poly (ADP-ribose) polymerase inhibition: past, present and future. Nat. Rev. Drug Discov. 19, 711–736.

Article  CAS  PubMed  Google Scholar 

Zakharenko A., Dyrkheeva N., Lavrik O. 2019. Dual DNA topoisomerase 1 and tyrosyl-DNA phosphodiesterase 1 inhibition for improved anticancer activity. Med. Res. Rev. 39, 1427–1441.

Article  CAS  PubMed  Google Scholar 

Alagoz M., Gilbert D.C., El-Khamisy S., Chalmers A.J. 2012. DNA repair and resistance to topoisomerase I inhibitors: mechanisms, biomarkers and therapeutic targets. Curr. Med. Chem. 19, 3874–3885.

Article  CAS  PubMed  Google Scholar 

Pommier Y., Huang S.N., Gao R., Das B.B., Murai J., Marchand C. 2014. Tyrosyl-DNA-phosphodiesterases (tdp1 and tdp2). DNA Repair. 19, 114–129.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comeaux E.Q., van Waardenburg R.C. 2014. Tyrosyl-DNA phosphodiesterase I resolves both naturally and chemically induced DNA adducts and its potential as a therapeutic target. Drug Metabolism Rev. 46, 494–507.

Article  CAS  Google Scholar 

Virág L., Szabó C. 2002. The therapeutic potential of poly (ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54, 375–429.

Article  PubMed  Google Scholar 

Groslambert J., Prokhorova E., Ahel I. 2021. ADP-ribosylation of DNA RNA. DNA Repair. 105, 103144.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lord C.J., Tutt A.N.J., Ashworth A. 2015. Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu. Rev. Med. 66, 455–470.

Article  CAS  PubMed  Google Scholar 

Das B.B., Huang S.N., Murai J., Rehman I., Amé J.-C., Sengupta S., Das S.K., Majumdar P., Zhang H., Biard D., Majumder H.K., Schreiber V., Pommier Y. 2014. PARP1–TDP1 coupling for the repair of topoisomerase I-induced DNA damage. Nucleic Acids Res. 42, 4435–4449.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lebedeva N.A., Anarbaev R.O., Sukhanova M., Vasil’eva I.A., Rechkunova N.I., Lavrik O.I. 2015. P-oly(ADP-ribose) polymerase 1 stimulates the AP-site cleavage activity of tyrosyl-DNA phosphodiesterase 1. Biosci. Rep. 3544.

Lopez-Mosqueda J., Hurley K., Simonson Q., Kloet M.S., Liu Q., Filippov D.V., van der Heden van Noort G.J. 2022. Poly-ADP-ribosylation modifies DNA–protein crosslinks to signal for SPRTN-dependent degradation. Int. Conf. PARP Family ADP-Ribosylation. Abstract Book. USA: Cold Spring Harbor Lab., p. 42.

Sun Y., Chen J., Huang S.N., Su Y.P., Wang W., A-gama K., Saha S., Jenkins L.M., Pascal J.M., Pommier Y. 2021. PARylation prevents the proteasomal degradation of topoisomerase I DNA-protein crosslinks and induces their deubiquitylation. Nat. Commun. 12, 1–16.

Google Scholar 

Zakharenko A.L., Luzina O.A., Sokolov D.N., Zakharova O.D., Rakhmanova M.E., Chepanova A.A., Dyrkheeva N.S., Lavrik O.I., Salakhutdinov N.F. 2017. Usnic acid derivatives are effective inhibitors of tyrosyl-DNA phosphodiesterase 1. Russ. J. Bioorg. Chem. 43, 84–90.

Article  CAS  Google Scholar 

Luzina O.A., Salakhutdinov N.F. 2016. Biological activity of usnic acid and its derivatives: Part 2. Effects on higher organisms. Molecular and physicochemical aspects. Russ. J. Bioorg. Chem. 42, 249–268.

Article  CAS  Google Scholar 

Zakharenko A.L. Zakharenko A.L., Luzina O.A., Sokolov D.N., Kaledin V.I., Nikolin V.P., Popova N.A., Patel J., Zakharova O.D., Chepanova A.A., Zafar A., Reynisson J., Leung E., Leung I.K.H., Volcho K.P., Salakhutdinov N.F., Lavrik O.I. 2019. Novel tyrosyl-DNA phosphodiesterase 1 inhibitors enhance the therapeutic impact of topotecan on in vivo tumor models. Eur. J. Med. Chem. 161, 581–593.

Article  CAS  PubMed  Google Scholar 

Nikolin V.P., Popova N.A., Kaledin V.I., Luzina O.A., Zakharenko A.L., Salakhutdinov N.F., Lavrik O.I. 2021. The influence of an enamine usnic acid derivative (a tyrosyl-DNA phosphodiesterase 1 inhibitor) on the therapeutic effect of topotecan against transplanted tumors in vivo. Clin. Exp. Metastasis. 38, 431–440.

Article  CAS  PubMed  Google Scholar 

Koldysheva E.V., Menshchikova A.P., Lushnikova E.L., Popova N A., Kaledin V.I., Nikolin V.P., Zakharenko A.L., Luzina O.A., Salakhutdinov N.F., Lavrik O.I. 2018. Antimetastatic activity of combined topotecan and tyrosyl-DNA phosphodiesterase-1 inhibitor on modeled Lewis lung carcinoma. Bull. Exp. Biol. Med. 166, 661–666.

Article  Google Scholar 

Dyrkheeva N.S., Zakharenko A.L., Novoselova E.S., Chepanova A.A., Nikolin V.P., Luzina O.A., Salakhutdinov N.F., Ryabchikova E.I., Lavrik O.I. 2021. Antitumor activity of the combination of topotecan and tyrosyl-DNA-phosphodiesterase 1 inhibitor on model Krebs-2 mouse ascite carcinoma. Mol. Biol. (Moscow). 55, 312–317.

Article  CAS  PubMed  Google Scholar 

Moiseev S.V. 2012. Anemia in cancer. Onkol. Zh. im. P.A. Gertsena. 1, 77–82.

Google Scholar 

Plotnikova N.A., Pyataev N.A., Kanaev P.M., Kokorev A.V., Kemaykin S.P., Kharitonov S.V., Gromova S.V. 2014. Features of the morphology of Lewis lung carcinoma against the background of correction of tumor growth with melatonin and 3-hydroxypyridine. Fund. Issled. 10, 549–552.

Google Scholar 

留言 (0)

沒有登入
gif