DNA Probes for Analysis of the Activity of Key Enzymes of the Base Excision DNA Repair Pathway in Human Cells

Krokan H.E., Bjørås M. 2013. Base excision repair. Cold Spring Harb. Perspect. Biol. 5, a012583.

Article  PubMed  PubMed Central  Google Scholar 

Dianov G., Price A., Lindahl T. 1992. Generation of single-nucleotide repair patches following excision of uracil residues from DNA. Mol. Cell. Biol. 12, 1605–1612.

CAS  PubMed  PubMed Central  Google Scholar 

Matsumoto Y., Bogenhagen D.F. 1994. Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair. Mol. Cell. Biol. 14, 6187–6197.

CAS  PubMed  PubMed Central  Google Scholar 

Frosina G., Fortini P., Rossi O., Carrozzino F., Raspaglio G., Cox L.S., Lane D.P., Abbondandolo A., Dogliotti E. 1996. Two pathways for base excision repair in mammalian cells. J. Biol. Chem. 271, 9573–9578.

Article  CAS  PubMed  Google Scholar 

Klungland A., Lindahl T. 1997. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 16, 3341–3348.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim Y.-J., Wilson D.M. III. 2012. Overview of base excision repair biochemistry. Curr. Mol. Pharmacol. 5, 3–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiederhold L., Leppard J.B., Kedar P., Karimi-Busheri F., Rasouli-Nia A., Weinfeld M., Tomkinson A.E., Izumi T., Prasad R., Wilson S.H. 2004. AP endonuclease-independent DNA base excision repair in human cells. Mol. Cell. 15, 209–220.

Article  CAS  PubMed  Google Scholar 

Das A., Wiederhold L., Leppard J.B., Kedar P., Prasad R., Wang H., Boldogh I., Karimi-Busheri F., Weinfeld M., Tomkinson A.E., Wilson S.H, Mitra S. 2006. NEIL2-initiated, APE-independent repair of oxidized bases in DNA: evidence for a repair complex in human cells. DNA Repair (Amst.). 5, 1439–1448.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cleaver J.E. 1968. Defective repair replication of DNA in Xeroderma pigmentosum. DNA Repair (Amst.). 3, 183–187.

Google Scholar 

Setlow R.B., Regan J.D., German J., Carrier W.L. 1969. Evidence that Xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA. DNA Repair (Amst.). 3, 188–195.

Google Scholar 

Helleday T., Eshtad S., Nik-Zainal S. 2014. Mechanisms underlying mutational signatures in human cancers. Nat. Rev. Genet. 15, 585–598.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grin I.R., Konorovsky P.G., Nevinsky G.A., Zharkov D.O. 2009. Heavy metal ions affect the activity of DNA glycosylases of the Fpg family. Biochemistry (Moscow). 74, 1253–1259.

CAS  PubMed  Google Scholar 

Kreklau E.L., Limp-Foster M., Liu N., Xu Y., Kelley M.R., Erickson L.C. 2001. A novel fluorometric oligonucleotide assay to measure O 6-methylguanine DNA methyltransferase, methylpurine DNA glycosylase, 8-oxoguanine DNA glycosylase and abasic endonuclease activities: DNA repair status in human breast carcinoma cells overexpressing. Nucleic Acids Res. 29, 2558–2566.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dianov G.L. 2003. Monitoring base excision repair by in vitro assays. Toxicology. 193, 35–41.

Article  CAS  PubMed  Google Scholar 

Weiss J.M., Goode E.L., Ladiges W.C., Ulrich C.M. 2005. Polymorphic variation in hOgg1 and risk of cancer: a review of the functional and epidemiologic literature. Mol. Carcinog. 42, 127–141.

Article  CAS  PubMed  Google Scholar 

Lee A.J., Hodges N.J., Chipman J.K. 2005. Interindividual variability in response to sodium dichromate-induced oxidative DNA damage: role of the Ser 326 Cys polymorphism in the DNA-repair protein of 8-oxo-7,8-dihydro-2'-deoxyguanosine DNA glycosylase 1. Cancer Epidemiol. Biomarkers Prev. 14, 497–505.

Article  CAS  PubMed  Google Scholar 

Xia L., O’Connor T.R. 2001. DNA glycosylase activity assay based on streptavidin paramagnetic bead substrate capture. Anal. Biochem. 298, 322–326.

Article  CAS  PubMed  Google Scholar 

Liu B., Yang X., Wang K., Tan W., Li H., Tang H. 2007. Real-time monitoring of uracil removal by uracil-DNA glycosylase using fluorescent resonance energy transfer probes. Anal. Biochem. 366, 237–243.

Article  CAS  PubMed  Google Scholar 

Wang X., Hou T., Lu T., Li F. 2014. Autonomous exonuclease iii-assisted isothermal cycling signal amplification: a facile and highly sensitive fluorescence DNA glycosylase activity assay. Anal. Chem. 86, 9626–9631.

Article  CAS  PubMed  Google Scholar 

Chen C., Zhou D., Tang H., Liang M., Jiang J. 2013. A sensitive, homogeneous fluorescence assay for detection of thymine DNA glycosylase activity based on exonuclease-mediated amplification. Chem. Commun. 49, 5874.

Article  CAS  Google Scholar 

Cao X., Sun Y., LuP., Zhao M. 2020. Fluorescence imaging of intracellular nucleases—a review. Anal. Chim. Acta. 1137, 225–237.

Article  CAS  PubMed  Google Scholar 

Mirbahai L., Kershaw R.M., Green R.M., Hayden R.E., Meldrum R.A., Hodges N.J. 2010. Use of a molecular beacon to track the activity of base excision repair protein OGG1 in live cells. DNA Repair (Amst.). 9, 144–152.

Article  CAS  PubMed  Google Scholar 

Belhadj S., Rentsch A., Schwede F., Paquet-Durand F. 2021. Fluorescent detection of PARP activity in unfixed tissue. PLoS One. 16, 1–13.

Article  Google Scholar 

Torchinsky D., Michaeli Y., Gassman N.R., Ebenstein Y. 2019. Simultaneous detection of multiple DNA damage types by multi-colour fluorescent labelling. Chem. Commun. 55, 11414–11417.

Article  CAS  Google Scholar 

Hu J., Liu M.-H., Li Y., Tang B., Zhang C.-Y. 2018. Simultaneous sensitive detection of multiple DNA glycosylases from lung cancer cells at the single-molecule level. Chem. Sci. 9, 712–720.

Article  CAS  PubMed  Google Scholar 

Maksimenko A., Ishchenko A.A., Sanz G., Laval J., Elder R.H., Saparbaev M.K. 2004. A molecular beacon assay for measuring base excision repair activities. Biochem. Biophys. Res. Commun. 319, 240–246.

Article  CAS  PubMed  Google Scholar 

Pearl L.H., Schierz A.C., Ward S.E., Al-Lazikani B., Pearl F.M.G. 2015. Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer. 15, 166–180.

Article  CAS  PubMed  Google Scholar 

Zhang Y., Li C.-C., Zhang X., Xu,Q., Zhang C.-Y. 2020. Development of oxidation damage base-based fluorescent probe for direct detection of DNA methylation. Anal. Chem. 92, 10223–10227.

Article  CAS  PubMed  Google Scholar 

Liu G., He W., Liu C. 2019. Sensitive detection of uracil-DNA glycosylase (UDG) activity based on terminal deoxynucleotidyl transferase-assisted formation of fluorescent copper nanoclusters (CuNCs). Talanta. 195, 320–326.

Article  CAS  PubMed  Google Scholar 

Suggitt M., Fearnley J., Swaine D., Volpato M., Phillips R., Bibby M., Loadman P., Anderson D., Anderson D. 2003. Comet assay and flow cytometry analysis of DNA repair in normal and cancer cells treated with known mutagens with different mechanisms of action. Teratog. Carcinog. Mutagen. 2, 13–29.

Article  Google Scholar 

Fasman G.D. 1975. Handbook of Biochemistry and Molecular Biology. 3rd ed. Cleveland: CRC.

Google Scholar 

Miroshnikova A.D., Kuznetsova A.A., Kuznetsov N.A., Fedorova O.S. 2016. Thermodynamics of damaged DNA binding and catalysis by human AP endonuclease 1. Acta Naturae. 8, 103–110.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuznetsova A.A., Fedorova O.S., Kuznetsov N.A. 2018. Kinetic features of 3'–5' exonuclease activity of human AP-endonuclease APE1. Molecules. 23, 2101.

Article  PubMed  PubMed Central  Google Scholar 

Kuznetsova A.A., Kuznetsov N.A., Ishchenko A.A., Saparbaev M.K., Fedorova O.S. 2014. Step-by-step mechanism of DNA damage recognition by human 8‑oxoguanine DNA glycosylase. Biochim. Biophys. Act-a. 1840, 387–395.

Article  CAS  Google Scholar 

Kuznetsov N.A., Koval V.V., Fedorova O.S. 2011. Mechanism of recognition and repair of damaged DNA by human 8-oxoguanine DNA glycosylase hOGG1. Biochemistry (Moscow). 76, 118–130.

CAS  PubMed  Google Scholar 

Kuznetsova A.A., Iakovlev D.A., Misovets I.V., Ishchenko A.A., Saparbaev M.K., Kuznetsov N.A., Fedorova O.S. 2017. Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1. Mol. Biosyst. 13, 2638–2649.

Article  CAS  PubMed  Google Scholar 

Kuznetsov N.A., Kiryutin A.S., Kuznetsova A.A., Panov M.S., Barsukova M.O., Yurkovskaya A.V., Fedorova O.S. 2017. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase. J. Biomol. Struct. Dyn. 35, 950–967.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif