Modern Approaches to Protein Engineering to Create Enzymes with New Catalytic Properties

Vanella R., Kovacevic G., Doffini V., de Santaella J.F., Nash M.A. 2022. High-throughput screening, next generation sequencing and machine learning: advanced methods in enzyme engineering. Chem. Commun. 58, 2455.

Article  CAS  Google Scholar 

Nikoomanzar A., Chim N., Yik E.J., Chaput J.C. 2020. Engineering polymerases for applications in synthetic biology. Q. Rev. Biophys. 53, 1–31.

Article  Google Scholar 

Siedhoffa N.E., Schwaneberg U., Davari M.D. 2020. Machine learning-assisted enzyme engineering. in Methods in Enzymology. 643, 281–315.

Article  Google Scholar 

Kuznetsov N.A., Fedorova O.S. 2020. Kinetic milestones of damage recognition by DNA glycosylases of the helix–hairpin–helix structural superfamily. Adv. Exp. Biol. Med. 1241, 1–18.

Article  CAS  Google Scholar 

Kuznetsova A.A., Fedorova O.S., Kuznetsov N.A. 2022. Structural and molecular kinetic features of activities of DNA polymerases. Int. J. Mol. Sci. 23, 6373.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu H., Dalby P.A. 2020. A beginner’s guide to molecular dynamics simulations and the identification of cross-correlation networks for enzyme engineering. Methods Enzymol. 643, 15–49.

Article  CAS  PubMed  Google Scholar 

Bulygin A.A., Kuznetsova A.A., Vorobjev Y.N., Fedorova O.S., Kuznetsov N.A. 2020. The role of active-site plasticity in damaged-nucleotide recognition by human apurinic/apyrimidinic endonuclease APE1. Molecules. 25, 3940.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bulygin A.A., Fedorova O.S., Kuznetsov N.A. 2022. Insights into mechanisms of damage recognition and catalysis by APE1-like enzymes. Int. J. Mol. Sci. 23, 4361.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowerman S., Wereszczynski J. 2016. Detecting allosteric networks using molecular dynamics simulation. Methods Enzymol. 578, 429–447.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tekpinar M., Neron B., Delarue M. 2021. Extracting dynamical correlations and identifying key residues for allosteric communication in proteins by correlation plus. J. Chem. Inf. Model. 61, 4832–4838.

Article  CAS  PubMed  Google Scholar 

Kladova O.A., Bazlekowa-Karaban M., Baconnais S., Piétrement O., Ishchenko A.A., Matkarimov B.T., Iakovlev D.A., Vasenko A., Fedorova O.S., Le Cam E., Tudek B., Kuznetsov N.A., Saparbaev M. 2018. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation. DNA Repair (Amst.). 64, 10–25.

Article  CAS  PubMed  Google Scholar 

Kladova O.A., Alekseeva I.V., Saparbaev M., Fedorova O.S., Kuznetsov N.A. 2020. Modulation of the apurinic/apyrimidinic endonuclease activity of human APE1 and of its natural polymorphic variants by base excision repair proteins. Int. J. Mol. Sci. 21, 7174.

Article  Google Scholar 

Smith G.P., Petrenko V.A. 1997. Phage display. Chem. Rev. 97, 391–410.

Article  CAS  PubMed  Google Scholar 

Ghadessy F., Ong J., Holliger P. 2001. Directed evolution of polymerase function by compartmentalized self-replication. Proc. Natl. Acad. Sci. U. S. A. 98, 4552–4557.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi J., Kim H.-S. 2020. Structure-guided rational design of the substrate specificity and catalytic activity of an enzyme. Methods Enzymol. 643, 181–202.

Article  CAS  PubMed  Google Scholar 

Au K.G., Cabrera M., Miller J.H., Modrich P. 1988. Escherichia coli MutY gene-product is required for specific A-G-]C.G mismatch correction. Proc. Natl. Acad. Sci. U. S. A. 85, 9163–9166.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Slupska M.M., Baikalov C., Luther W.M., Chiang J.-H., Wei Y.-F., Miller J.H. 1996. Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J. Bacteriol. 178, 3885–3892.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Back J.H., Park J.H., Chung J.H., Kim D.S.H.L., Han Y.S. 2006. A distinct TthMutY bifunctional glycosylase that hydrolyzes not only adenine but also thymine opposite 8-oxoguanine in the hyperthermophilic bacterium, Thermus thermophilus. DNA Repair. 5, 894–903.

Article  CAS  PubMed  Google Scholar 

Kunrath-Lima M., Repolês B.M., Alves C.L., Furtado C., Rajão M.A., Macedo A.M., Franco G.R., Pena S.D.J., Valenzuela L., Wisnovsky S., Kelley S.O., Galanti N., Cabrera G., Machado C.R. 2017. Characterization of Trypanosoma cruzi MutY DNA glycosylase ortholog and its role in oxidative stress response. Infect. Genet. Evol. 55, 332–342.

Article  CAS  PubMed  Google Scholar 

Li X., Lu A.L. 2001. Molecular cloning and functional analysis of the MutY homolog of Deinococcus radiodurans. J. Bacteriol. 183, 6151–6158.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Au K.G., Clark S., Miller J.H., Modrich P. 1989. Escherichia coli mutY gene encodes an adenine glycosylase active on G-A mispairs. Proc. Natl. Acad. Sci. U. S. A. 86, 8877–8881.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bulychev N.V, Varaprasad C.V, Dorman G., Miller J.H., Eisenberg M., Grollman A.P., Johnson F. 1996. Substrate specificity of Escherichia coli MutY protein. Biochemistry. 35, 13147–13156.

Article  CAS  PubMed  Google Scholar 

Lee S., Verdine G.L. 2009. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase. Proc. Natl. Acad. Sci. U. S. A. 106, 18497–18502.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A. 1995. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197.

Article  CAS  Google Scholar 

Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J.L., Dror R.O., Shaw D.E. 2010. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 78 (8), 1950–1958. https://doi.org/1002/prot.22711

Hornak V., Abel R., Okur A., Strockbine B., Roitberg A., Simmerling C. 2006. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins. 65, 712–725.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivani I., Dans P.D., Noy A., Pérez A., Faustino I., Hospital A., Walther J., Andrio P., Goñi R., Balaceanu A., Portella G., Battistini F., Gelpi J.L., Gonzalez C., Vendruscolo M., Laughton C.A., Harris S.A., Case D.A., Orozco M. 2016. PARMBSC1: a refined force-field for DNA simulations. Nat. Methods. 13, 55–58.

Article  CAS  PubMed  Google Scholar 

Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T.E., Laughton C.A., Orozco M. 2007. Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys. J. 92, 3817–3829.

Article  PubMed  PubMed Central  Google Scholar 

Cheng X., Kelso C., Hornak V., De Los Santos C., Grollman A.P., Simmerling C. 2005. Dynamic behavior of DNA base pairs containing 8-oxoguanine. J. Am. Chem. Soc. 127 (40), 13906‒13918. https://doi.org/10.1021/ja052542s

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith D.M.A., Xiong Y., Straatsma T.P., Rosso K.M., Squier T.C. 2012. Force-field development and molecular dynamics of [NiFe] hydrogenase. J. Chem. Theory Comput. 8, 2103–2114.

Article  CAS  PubMed  Google Scholar 

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926.

Article  CAS  Google Scholar 

Joung I.S., Cheatham T.E. 2008. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 112, 9020–9041.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anandakrishnan R., Aguilar B., Onufriev A.V. 2012. H++ 3.0: automating PK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 40, 537–541.

Article  Google Scholar 

Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindah E. 2015. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. https://doi.org/10.1016/j.softx.2015.06.001

Berendsen H.J.C., van der Spoel D., van Drunen R. 1995. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56.

Article  CAS  Google Scholar 

Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. 1995. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577.

Article  CAS  Google Scholar 

Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. 1997. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

Bussi G., Donadio D., Parrinello M. 2007. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101.

Article 

留言 (0)

沒有登入
gif